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Ancrage des LLMs comme agents autoteliques d’apprentissage par renforcement

Résumé : La construction de machines capables de traiter et comprendre le langage naturel est un
objectif historique de l'intelligence artificielle (IA). Récemment, les approches distributionnelles par
réseaux neuronaux profonds, en particulier les grands modéles de langage (LLMs), ont permis des avancées
spectaculaires. Ces modéles, entrainés a générer du texte en imitant de vastes corpus issus d’Internet,
reposent toutefois sur un paradigme purement statistique, dont les limites sont de plus en plus mises en
lumiére. Cela contraste fortement avec l’acquisition du langage chez I’humain, profondément ancrée dans
Iinteraction sensorimotrice et sociale. Le langage humain est acquis pour atteindre des objectifs, dans un
cadre fonctionnel, guidé par la motivation intrinséque et la curiosité.

Dans cette thése, nous explorons comment rapprocher les LLMs des théories développementales de
I’acquisition du langage, en les incarnant comme des agents curieux capables d’apprendre par renforcement
via l'interaction avec un environnement.

Nous introduisons d’abord le concept d’ancrage fonctionnel : ’alignement des représentations internes
d’un agent avec un environnement externe afin d’agir efficacement. Pour cela, nous proposons GLAM,
une méthode d’apprentissage par renforcement en ligne qui entraine les LLMs dans des environnements
textuels. GLAM améliore significativement leur compétence fonctionnelle — c’est-a-dire leur capacité a
utiliser le langage pour atteindre des buts. Une analyse approfondie montre que combiner cet ancrage
avec des contextes variés et un apprentissage contrastif en augmente la robustesse. Nous abordons ensuite
la modélisation du monde avec WorldLLM, un cadre dans lequel les LLMs générent et affinent des théories
en langage naturel a partir d’interactions curieuses, améliorant leurs capacités prédictives.

Nous étendons ensuite ce cadre a des environnements complexes, ol les objectifs possibles sont
nombreux ou ouverts. Inspirés par I’apprentissage autotelique humain — out I'on choisit et poursuit ses
propres buts — nous proposons SAC-GLAM, une extension de GLAM combinant apprentissage off-policy
et réétiquetage a posteriori, afin de mieux exploiter des signaux de récompense rares ou bruités. Nous
traitons ensuite le probléme de la sélection d’objectifs via le progrés en apprentissage, et introduisons
MAGELLAN;, un module métacognitif permettant aux LLMs d’estimer leur compétence et de prioriser
les objectifs les plus bénéfiques. MAGELLAN structure ’exploration des modéles en tenant compte
des relations sémantiques et des dynamiques sous-jacentes entre les buts. Enfin, nous montrons que ces
capacités métacognitives permettent également aux LLMs de reconnaitre leurs limites et de demander de
l'aide extérieure lorsqu’ils ne sont pas compétents.

Cette recherche montre que I'incarnation des LLMs comme agents autotelique ouvre des perspectives
fortes pour le développement de modéles de langage ancrés, adaptatifs et auto-améliorables. Elle constitue
une avancée vers des modeéles capables non seulement d’utiliser le langage de maniére fonctionnelle, mais
aussi de mieux comprendre le monde et leur propre fonctionnement. Néanmoins, de nombreuses questions
restent ouvertes et atteindre un ancrage fonctionnel dans notre monde physique et social demeure un défi
majeur pour la prochaine génération de systémes intelligents.

Mots-clés : intelligence artificielle, modéles de langage, apprentissage par renforcement, motivation
intrinséque, curiosité artificielle, acquisition du langage
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Grounding LLMs as Autotelic Reinforcement Learning Agents

Abstract: Building machines capable of processing and understanding natural language has long been
a central goal of artificial intelligence (AI). In recent years, distributional approaches based on deep
neural networks have dominated the field. In particular, large language models (LLMs)—trained to
generate text by imitating large internet corpora—have driven remarkable progress. However, their purely
statistical learning paradigm faces growing criticism. In contrast, developmental sciences emphasize
that human language acquisition is grounded in sensorimotor experience and social interaction. Humans
acquire language by interacting with the physical and social world and use it in functional, goal-directed
ways—driven by intrinsic motivation and curiosity.

This thesis explores how to bridge the gap between LLMs and developmental theories of language
acquisition by embodying LLMs as curiosity-driven reinforcement learning (RL) agents capable of learning
from interaction. We begin by introducing the concept of functional grounding: aligning an agent’s
internal representations with the external environment to enable prediction, control, and goal achievement.
To this end, we propose GLAM, an online RL-based approach that trains LLMs through interaction with
a textual environment. We show that GLAM significantly improves functional competence—that is, the
model’s ability to use language effectively to achieve goals. A follow-up analysis identifies limitations (e.g.,
sensitivity to prompt format) and shows that combining grounding with varied contexts and contrastive
learning increases robustness. To enhance predictive capabilities, we also introduce WorldLLM, a
framework where LLMs generate and refine natural language theories through curiosity-driven interaction,
improving their world modeling abilities.

We then explore functional grounding in more complex environments involving an open-ended set of
goals. Inspired by human development, we adopt an autotelic learning approach—where agents generate,
choose, and pursue their own goals. We first address the challenge of sample efficiency with SAC-GLAM,
an extension of GLAM that incorporates off-policy RL and hindsight relabeling to better learn from
sparse or noisy rewards. Next, we tackle goal selection by extending Learning Progress (LP) methods
to language-defined goals. We introduce MAGELLAN, a metacognitive module that enables LLMs to
estimate their competence and prioritize goals that maximize LP. MAGELLAN structures exploration
by capturing semantic and dynamic relationships between goals. We show that metacognitive abilities
help LLMs not only decide what to learn next but also recognize when help is needed and seek external
assistance.

Altogether, this research demonstrates that embodying LLMs as autotelic agents opens new avenues for
creating grounded, adaptive, and self-improving language models. It offers concrete steps toward building
LLMs that not only use language functionally but also learn to model the world and themselves—through
metacognitive capabilities. Yet, much remains to be done, and achieving functional grounding in our
physical and social world remains a major challenge for the next generation of intelligent systems.

Keywords: artificial intelligence, language models, reinforcement learning, intrinsic motivation,
artificial curiosity, language acquisition

Unité de Recherche
INRIA, 33000 Bordeaux, France.
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Developing machines capable of understanding human language and responding
appropriately has been a long-standing objective in the field of artificial intelligence (AI).
Since the early days of Al, evaluating machine intelligence has often been associated with
the machine’s ability to process and generate natural language. In his seminal work, Alan
Turing proposed a test in which a machine and a human are placed in separate rooms, and
a third party—the judge—interacts with both through written communication without
knowing which is which (Turing, 1950). If the judge is unable to reliably distinguish the
machine from the human based solely on their responses, the machine is considered capable
of "thinking." For several decades, Turing’s test was regarded as a valid benchmark for
machine intelligence. However, subsequent experiments demonstrated that relatively
simple rule-based systems, such as ELIZA (Weizenbaum, 1966), could deceive human
interlocutors, revealing a tendency to anthropomorphize conversational behavior (Block,
1981). These findings raised a fundamental and still unresolved question: how can we
determine whether a machine genuinely understands the meaning of the language it
processes?

Answering this question invites us to delve into theories from psychology and lin-
guistics concerning how humans acquire and use language. Contemporary theories of
language acquisition, such as usage-based approaches (see the survey from Tomasello
(2003)), emphasize the role of language as a developmental tool that supports and emerges
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from the child’s broader cognitive growth. According to these perspectives, language is
not acquired in isolation but develops progressively through interaction, initially serving
communicative functions—particularly with caregivers—and facilitating the abstraction
and categorization of the complex environment with which the child engages. Over time,
language becomes internalized and functions as a cognitive tool to support higher-order
processes such as imagination, planning, and prediction (Vygotsky, 1962). This develop-
mental trajectory suggests that language is inherently grounded in interaction—both
with the physical world through sensorimotor experience and with the social world through
interpersonal communication.

Returning to the challenge of designing machines capable of answering natural language
questions, the field has advanced significantly since early heuristic systems such as ELIZA.
These efforts have coalesced into the domain now known as natural language processing
(NLP). Whereas initial approaches were based on hand-crafted rules, the field has since
transitioned toward data-driven methodologies, primarily relying on machine learning
(ML) techniques. This shift has been driven by several factors, including advancements
in ML, developments in language acquisition theories, and the widespread availability
of large-scale linguistic data via the internet. By training models to predict the most
probable next word in a sequence using massive datasets and billions of parameters,
recent years have witnessed remarkable progress in computational language modeling.
These models, referred to as large language models (LLMs), generate text sequentially
and are now widely deployed. They can process and respond to a variety of human
queries, including those involving complex capabilities such as reasoning (Huang et al.,
2023; Yao et al., 2022), planning (Ahn et al., 2022; Huang et al., 2022), and commonsense
inference (Brown et al., 2020; Chowdhery et al., 2022). Despite their purely statistical
nature and lack of grounding in sensory or social experiences, LLMs appear to perform
tasks traditionally thought to require semantic understanding. However, they continue to
exhibit notable limitations, suggesting that some of their apparent competencies may be
superficial (Bender & Koller, 2020; Shojaee et al., 2025). These shortcomings point to the
possibility that grounding—through interaction with the physical and social world—may
be essential to surpass current performance boundaries.

The present research aims to explore how the gap between grounded theories of
language acquisition and contemporary LLMs can be addressed through an embodied
approach. This introductory chapter begins by examining theoretical perspectives on
language development, with a particular emphasis on the role of sensorimotor experi-
ences in grounding linguistic understanding. We then provide an overview of current
computational models of language—namely, LLMs—highlighting both their capabilities
and their limitations. Finally, we conclude the chapter by motivating and outlining our
research contributions, which center on embedding LLMs in interactive environments
using curiosity-driven reinforcement learning (RL) to support embodied and grounded
language learning—a direction extensively explored in developmental sciences for modeling
language acquisition, but largely overlooked in NLP.
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1.1 Usage-based language acquisition

Early theories of language acquisition from linguistics, mostly initiated by Noam
Chomsky, proposed the existence of innate grammatical structures underlying all human
languages, such as generative grammars (Chomsky, 1957). For decades, linguistic research
was primarily oriented toward uncovering these presumed universal, abstract syntactic
rules. However, the absence of conclusive empirical evidence supporting the existence
of such innate grammars, as well as the emergence of new theories in developmental
psychology and cognitive science, motivated linguistics to propose alternative approaches.

In particular, constructivists in psychology proposed theories of the child’s cognitive
development where language acquisition is tightly bound to sensorimotor and social
experiences. Notably, Piaget introduced the concept of schemas—internal representations
of concepts that integrate both perceptual inputs and motor programs—to which linguistic
labels are attached (Piaget, 1954). As illustrated by Cangelosi et al. (2010), for example,
"the word heavy can be understood as grounded in haptic expectations associated with
lifting actions". In Piaget’s framework, words serve as labels for one’s sensorimotor
experiences that are abstracted into schemas. Complementing this view, Vygotsky’s
sociocultural theory of development emphasized the central role of language in cognitive
growth (Vygotsky, 1962; Mirolli & Parisi, 2011). Language initially functions as a tool
for interpersonal communication—particularly between the child and caregivers—before
being gradually internalized to support individual thought processes.

Similarly, numerous studies in cognitive science have highlighted the limitations of
classical cognitive theories, which conceptualize the human mind as processing abstract
symbols—such as words or grammatical rules—independently of the body (Barsalou,
1999; Glenberg & Robertson, 2000; Wilson, 2002; Pecher & Zwaan, 2005). In contrast,
sensorimotor experiences and embodiment have increasingly been recognized as central
to cognition, echoing the emphasis made in the constructivist movement. Specifically, the
embodied cognition movement advocates a fundamental shift in perspective: rather than
viewing the body as merely a support system for a disembodied mind solving abstract
problems, it posits that the mind itself has evolved primarily to serve the needs of the
body in interacting with and navigating the world (Wilson, 2002).

Given this evidence that cognition and language may emerge solely from one’s inter-
actions with their sociocultural environment, usage-based theories of language appeared
in linguistics, proposing that language structure emerges from language use (Tomasello,
2003). Rather than positing pre-specified linguistic capacities or universal generative
templates, they therefore suggest that language emerges through and supports the child’s
cognitive development within a rich sociocultural context. Several key principles arise
from this perspective. First, grammatical abstractions and the compositional nature
of language are seen as emerging from the child’s need to conceptualize and structure
experiences in a complex environment. Second, statistical learning mechanisms play a
critical role in acquiring linguistic patterns. Finally, and most crucial to the present
research, language acquisition is fundamentally grounded in both sensorimotor and social
interactions. This grounding encompasses not only perceptual experiences (e.g., visual,
auditory) but also the motor actions through which the child actively engages with and
explores their environment.
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1.1.1 The symbol grounding problem

The importance of grounding concepts and language in one’s experiences is also
central to discussions regarding the notion of meaning. To illustrate the limitations of
syntactic rule-based theories in explaining how meaning stems from language, Searle
introduced the Chinese Room thought experiment in his seminal paper Minds, Brains,
and Programs (Searle, 1980). In this scenario, Searle imagines himself receiving sequences
of Chinese characters (i.e., questions) along with a set of syntactic rules for manipulating
these symbols based purely on their visual form, despite having no understanding of the
Chinese language. By mechanically applying these rules, he is able to produce responses
in Chinese that are indistinguishable from those of a native speaker. In such a case,
Searle could seemingly pass the Turing Test, yet without any genuine understanding of
the language—thereby challenging the notion that syntactic processing alone constitutes
understanding.

Expanding on this critique, Stevan Harnad proposed a related thought experiment,
in which a person attempts to learn Chinese using only a Chinese-to-Chinese dictionary
(Harnad, 1990). In this scenario, each symbol is defined solely in terms of other symbols,
resulting in an infinite regress with no anchoring in meaning. Both thought experiments
underscore a fundamental issue in symbolic theories of language and cognition: symbols
that are manipulated solely based on formal rules lack semantic grounding. These
arguments support the view that meaning arises through connections to perceptual and
sensorimotor experience. This leads us to a central question:

“[...] how are symbols grounded in something else than other sym-
bols to obtain their meaning? ”— The symbol grounding problem Harnad (1990)

I shall conclude this section by defining what I will mean by grounded in the present
document. Here, grounded will refer to internal representations that are shaped by
interactions with an external environment. Accordingly, grounding will denote the process
through which such internal representations are formed in response to external stimuli.
This interpretation is closely aligned with the definition proposed by Roy (2005b), who
describe grounding as "the processes by which an agent relates beliefs to external physical
objects." However, the definition adopted in the present work generalizes this view: it
does not restrict grounding to beliefs alone—as it may involve various forms of internal
representations—nor does it limit the referents to physical objects, as grounding may also
pertain to abstract concepts.

1.2 Statistical approaches in NLP

In Section 1.1, I examined the limitations of theoretical frameworks that concep-
tualize language processing as a purely symbolic, rule-based manipulation of abstract
representations—where symbols derive meaning exclusively through their relations to
other symbols. I also reviewed a range of perspectives from linguistics, psychology, and
cognitive science that converge on the importance of the interplay between sensorimotor
experience, internal representation, and language. With this theoretical foundation in
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place, we now return to our central focus: the challenge of designing machines capable of
understanding language.

Historically driven by rule-based theories such as generative grammars, symbolic
approaches dominated the field of NLP until the 1990s. These methods relied on ab-
stract, human-defined rules and symbols to model language. However, the emergence of
statistical approaches stemming from machine learning—models composed of parameters
optimized through gradient descent—gradually shifted the field toward data-driven tech-
niques. Rather than relying on hand-crafted rules, these methods learn distributed vector
representations of words directly from large-scale textual corpora (e.g., books, web pages).
This shift was strongly influenced by the theory of distributional semantics, initially
proposed by Firth (1957) and Harris (1954), which posits that the meaning of a word
can be inferred from the linguistic contexts in which it typically appears. Leveraging this
idea, artificial neural networks trained on large corpora to predict the most likely word
given its surrounding context were shown to yield rich vector representations of words
(Mikolov et al., 2013; Boleda, 2020). These learned embeddings were found to capture not
only syntactic properties but also meaningful aspects of semantics (Bengio et al., 2003).

1.2.1 From Transformers to LLMs

In addition to enabling the learning of rich word representations, neural approaches
have been successfully applied to directly address core NLP tasks. Among these, machine
translation—where the goal is to generate a sentence in a target language given an input
sentence in a source language—has played a pivotal role in advancing neural methods
(Sutskever et al., 2014; Bahdanau et al., 2014). Early neural machine translation (NMT)
systems primarily relied on recurrent neural networks (RNNs), particularly Long Short-
Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997). This paradigm
shifted with the introduction of the Transformer architecture in 2017 (Vaswani et al.,
2017), which replaced recurrence with a self-attention mechanism (Bahdanau et al., 2014)
and enabled parallel processing of sequences. The transformer’s ability to model complex
dependencies more efficiently led to substantial improvements in translation performance
and quickly established it as the dominant architecture across a wide range of NLP tasks.

Compared to RNNs, large transformer architectures offer significant advantages in
terms of training efficiency and scalability. This computational efficiency enabled the
training of much larger models on tasks far beyond translation. A key milestone in this
evolution was the release of GPT-2 (Radford et al., 2019), which marked a turning point in
the field. GPT-2 is a transformer-based model trained using the causal language modeling
objective—that is, predicting the most probable next word given a preceding sequence—on
an extensive corpus of text scraped from the internet. The study demonstrated that
scaling up model size and training data could yield models capable of impressive linguistic
competence. These models, soon referred to as large language models (LLMs), exhibited
remarkable emergent capabilities (Chowdhery et al., 2022). Beyond generating fluent
and coherent text, GPT-2 showed the ability to perform tasks such as summarization,
translation, and question answering—despite not being explicitly trained for these tasks.



Introduction

1.2.2 LLMs are passive learners

Since the release of GPT-2, a wide range of increasingly large and powerful LLMs have
been developed (e.g., (Brown et al., 2020; Scao et al., 2022; Touvron et al., 2023; Chowdhery
et al., 2022; Jiang et al., 2023a)). These models have shown continuous and substantial
improvements across a broad spectrum of tasks. Notably, they exhibit capabilities such as
in-context learning—the ability to adapt to new tasks given only a few examples—alongside
robust performance in open-domain question answering, mathematical problem solving,
and even forms of reasoning (Lampinen et al., 2024).

The impressive performance of LLMs challenges existing theories of how linguistic
meaning is acquired (Bender & Koller, 2020; Bisk et al., 2020; Merrill et al., 2021;
Piantadosi & Hill, 2022; Mollo & Milliére, 2023; Pavlick, 2023; Gubelmann, 2024). Many
of the tasks these models successfully perform are traditionally assumed to require an
understanding of the meaning of words. However, the training paradigm of LLMs makes it
evident that they lack any form of grounding. These models are trained solely to predict
the next word in a sequence, having passively processed vast corpora of text without
any direct interaction with the physical or social world. In this sense, their operation
closely parallels the scenario described in Searle’s Chinese Room thought experiment:
they manipulate symbols according to statistically derived rules without any access to the
underlying meaning. As Searle argued, such symbol manipulation, devoid of experiential
grounding, is insufficient for genuine understanding.

The earlier discussions of Turing’s test and ELIZA prompt a fundamental question:
do LLMs truly understand the meaning of the words they use? While it is difficult
to claim that LLMs possess no semantic understanding at all, it is equally unclear
where their limitations lie. Bender & Koller (2020) caution that many of the seemingly
impressive abilities of LLMs may be misleading, especially considering the human tendency
to anthropomorphize and attribute meaning or intelligence to machines (Block, 1981).
Several studies have highlighted critical shortcomings in LLMs. For instance, McCoy et al.
(2019) demonstrated that LLMs often rely on shallow heuristics to succeed on standard
benchmarks. More recently, Shojace et al. (2025) showed that LLMs’ reasoning abilities
break down entirely beyond a certain level of task complexity—even when explicitly
provided with step-by-step plans or algorithms. Broadly speaking, Mahowald et al. (2024)
argue for a distinction between formal competence (i.e., mastery of linguistic patterns and
regularities) and functional competence (i.e., the capacity to use language meaningfully in
real-world contexts to pursue goals (Roy, 2005b)), a distinction also observed in human
cognition. While LLMs excel at formal competence, their functional abilities remain
significantly limited.

1.3 Towards grounded LLMs through interactions

Building computational models of language understanding that are grounded in
experience is not a new endeavor and has been extensively explored across several research
fields. However, much of this literature has remained largely overlooked within the NLP
community. In particular, many of these models provide compelling evidence for the
embodied framework of language acquisition, emphasizing how language is acquired and
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grounded in one’s sensorimotor experiences.

1.3.1 Existing models of grounded language understanding

Among the fields investigating computational models of grounded language under-
standing and acquisition, developmental robotics has arguably been the most active. By
leveraging physical robots, this field aims to design machines that learn and develop in
ways analogous to human—particularly child—development (Lungarella et al., 2003).
Robots offer a uniquely well-suited framework for studying the role of embodiment,
sensorimotor experience, and social interaction in cognitive development.

Over the past two decades, a wide range of models of grounded language acquisition
have been proposed (see reviews by Cangelosi et al. (2010); Cangelosi & Schlesinger (2015);
Cangelosi & Stramandinoli (2018); Oudeyer et al. (2019)). These models provide empirical
support for key aspects identified by embodied and usage-based theories of language
learning. For example, they highlight the importance of constructing an internal world
model (Roy, 2005a; Dominey et al., 2009) and of incorporating social learning mechanisms
(Steels, 2001; Steels & Kaplan, 2002; Dominey et al., 2009). The models address different
forms of grounding, from mapping words to sensory modalities (e.g., naming perceived
objects or performed actions) to grounding abstract words via associations with concrete
ones. To achieve this, developmental roboticists have employed a mix of symbolic and
statistical Al techniques, drawing on supervised, unsupervised, and reinforcement learning,.

The latter refers to learning mechanisms in which behavior is acquired through trial
and error, guided by scalar feedback signals known as rewards (Sutton & Barto, 2018).
Reinforcement learning (RL) has been widely used to develop artificial agents capable
of learning from interaction with their environment. The goal in RL is to discover a
strategy—or policy—that maximizes the cumulative reward obtained over time. Early RL
methods were limited to simple, discrete environments with small state and action spaces,
where policies could be learned using tabular approaches. For example, methods such as
Q-learning (Watkins & Dayan, 1992) represent the expected reward of each state-action
pair in a lookup table. The introduction of Deep Q-learning (Mnih et al., 2015) and
policy gradient methods (Sutton & Barto, 2018) extended the applicability of RL to more
complex domains by using neural networks for function approximation. These advances
have enabled significant progress in areas such as control systems (Degrave et al., 2022),
games (Silver et al., 2016), robotics (Kalashnikov et al., 2018), and natural language
generation (Ranzato et al., 2016).

The situated and embodied nature of RL has established it as a key learning mechanism
for modeling embodied cognition, including grounded language acquisition. This holds
true both within developmental robotics and in broader Al efforts to build autonomous
artificial agents. A notable line of work has explored RL agents interacting with video
game environments, where the agents must learn to achieve goals specified through natural
language instructions. These studies reinforce the idea that embodied, situated learning
facilitates the acquisition of new nouns (Hermann et al., 2017; Hill et al., 2021), and even
supports language comprehension tasks such as answering natural language questions
(Das et al., 2018). In parallel, other works have investigated language as a cognitive tool
for labeling the skills performed by RL agents (Lair et al., 2019; Akakzia et al., 2021;
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Colas et al., 2020). By associating language with learned behaviors, these approaches
enable autonomous learning driven by the compositional nature of language—allowing
agents to combine known skills into novel ones to expand their behavioral repertoire.

Such autonomous learning mechanisms are known to play a crucial role in human
cognitive development, including language acquisition. Developmental robotics models
have extensively incorporated curiosity-driven learning, where intrinsic motivational
signals encourage learners to actively engage with their environment (Cangelosi et al.,
2010; Cangelosi & Schlesinger, 2015; Oudeyer et al., 2019). Moreover, Oudeyer & Kaplan
(2006); Moulin-Frier et al. (2014); Oudeyer & Smith (2016) provided evidence that curiosity
alone can explain the emergence of vocal speech and language—initially through imitation
of peers, and later through the strategic use of speech to attract attention and influence
one’s social environment (i.e., functional competence).

Curiosity-driven learning has also become a central paradigm in Al, particularly
in the design of autonomous RL agents operating in complex environments. This in-
cludes methods that promote low-level exploration through intrinsic motivation signals
(Schmidhuber, 1991b; Oudeyer & Kaplan, 2007; Baldassarre & Mirolli, 2013; Pathak et al.,
2017; Burda et al., 2019b,a), as well as approaches that enable higher-level, structured
exploration by developing autotelic agents—agents that set and pursue their own goals
(Colas et al., 2022a,b; Sigaud et al., 2024). In RL, curiosity-driven learning empowers
agents to autonomously explore and interact with their environment, thereby supporting
the acquisition of new knowledge (e.g., discovering novel states or refining internal models
of the world) and the development of new skills.

1.3.2 Building embodied LLM agents

Turning back to LLMs, efforts to improve their grounding have primarily focused
on integrating multimodal inputs. In particular, there has been a growing interest in
developing vision language models (VLMs), which are trained on datasets containing paired
visual and textual inputs (e.g., images with associated captions, questions, or answers)
(Yun et al., 2021; Alayrac et al., 2022; Radford et al., 2021; Gallouédec et al., 2024; Team
et al., 2025). This strategy corresponds to a form of multimodal, or "direct" grounding
(Cangelosi & Stramandinoli, 2018), where linguistic symbols are explicitly anchored to
perceptual modalities—most commonly vision. Another avenue has involved leveraging
human feedback, particularly through the fine-tuning of LLMs using reinforcement
learning to optimize for human-aligned behavior (Ouyang et al., 2022; Gulcehre et al.,
2023; Ahmadian et al., 2024). Known as reinforcement learning from human feedback
(RLHF), this approach enables LLMs to explore and learn strategies for generating text
sequences that maximize reward models derived from human preferences. In doing so,
RLHF represents a rudimentary form of social learning.

While these constitute meaningful steps toward improving grounding in LLMs, the
theoretical perspectives on human language acquisition reviewed earlier—as well as the
existing computational models—indicate that grounding language should be approached
within a situated and embodied framework. Several position papers in NLP have similarly
called for a stronger focus on embodied language models (Kiela et al., 2016; Lucy &
Gauthier, 2017; McClelland et al., 2019; Bender & Koller, 2020; Bisk et al., 2020; Tamari
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et al., 2020). The principal contribution of this manuscript is to propose and empirically
investigate several approaches for embodying LLMs and enabling them to be incrementally
updated—i.e., grounded—through interaction with external environments. In particular,
we focus on grounding their functional competence, that is, their ability to use language
effectively to achieve goals.

This work is not the first to explore the embodiment of LLMs—that is, enabling
them to perform actions and interact with external environments. Early contributions
such as Yao et al. (2020); Ahn et al. (2022); Huang et al. (2022); Liang et al. (2023);
Wang et al. (2022); Yao et al. (2022) showed that the planning capabilities of LLMs
could be leveraged for action selection in robotic and interactive settings. However, a
fundamental limitation of these approaches lies in the potential misalignment between
the LLM’s internal representations and the external environment it operates in. This
misalignment constrains the model’s ability to use language effectively in context—i.e., its
functional competence. We argue that these pioneering works overlook a key component:
the integration of a feedback loop that allows the model’s internal representations to be
continuously updated and aligned with the outcomes of its interactions.

The central question that follows is: how can such an update mechanism be imple-
mented? We propose to build on existing evidence from computational models of grounded
language acquisition, which highlight how reinforcement learning and curiosity-driven
learning can be leveraged to shape autonomous embodied agents that actively explore their
environment and incrementally update their knowledge. We argue that our contributions
are particularly timely given the growing body of work investigating how LLMs can be
trained with reinforcement learning to enhance their reasoning abilities, especially in
settings where models interact with programs or external tools to solve problems (Wen
et al., 2024b; Zhou et al., 2024b; DeepSeek-Al et al., 2025; Wang & Ammanabrolu, 2025).

1.3.3 Contributions

This present research aims to bridge the gap between embodied theories of language
learning—emphasizing action-perception interactions—and current LLMs. Specifically, we
investigate how LLMs can be embodied in external environments, enabling them to explore,
acquire new knowledge, and ground their internal representations by using language to
solve tasks through curiosity-driven RL. The core contribution of this work is, therefore, the
proposal of an interaction-based approach to grounding LLMs’ functional competence. We
start Chapter 3 by introducing what we define as functional grounding: the grounding
of symbol processing used to control, model, and predict external environmental dynamics
in order to pursue goals. One important clarification is that functional grounding does
not inherently imply multimodality. Functional competence in symbol processing can
emerge through interaction with an external environment using only symbolic inputs
and outputs—provided that these interactions allow symbols to be grounded in the
environment’s external dynamics. For this reason, all empirical contributions in this
research adopt a strict definition of embodiment: an agent is considered embodied if
it can perceive and act upon an external environment, regardless of modality. We
therefore exclusively use textual environments throughout this manuscript, allowing us to
isolate functional grounding from other forms of grounding and focus specifically on the
development of functional competence in LLMs.
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We then present our first line of work (Chapter 3), which explores how LLMs’ can be
functionally grounded by learning a policy that enables an agent to perform actions and
solve tasks within an environment. To our knowledge, we introduce the first approach that
embodies an LLM as an agent’s policy within an external environment and grounds its
functional competence through RL via online interactions. Our method, termed GLAM
(Grounded LAnguage Model), provides a foundation for enhancing LLMs’ functional
competence and has since been extended by several research teams (e.g. (Yan et al., 2023;
Zhou et al., 2024b; Wen et al., 2024a,b)). Following a detailed presentation of GLAM,
Chapter 3 offers an in-depth analysis of how functional grounding shapes the internal
representations and knowledge of LLMs. We show that increasing the diversity of textual
observations, especially when paired with contrastive learning, is crucial for developing
robust and consistent functional competence—and even enables LLMs to internalize the
dynamics of their environment.

While Chapter 3 examines the control aspect of functional competence, Chapter 4
turns to the prediction component. Specifically, we investigate how LLMs can serve
as world models—that is, systems capable of predicting how actions alter the state of
an environment. We argue that the ability to model environmental dynamics is a core
element of functional competence that LLMs should develop. To this end, we introduce
WorldLLM, a method inspired by developmental theories, particularly the way humans
refine internal models through (1) curiosity-driven exploration and (2) the formulation of
natural language intuitive theories. In WorldLLM, the agent is rewarded for discovering
states that the LLM fails to predict accurately. It then leverages these experiences
to generate natural language hypotheses about the environment’s dynamics, which are
incorporated into the LLM’s prompt to improve future predictions. Through an iterative
loop of exploration, hypothesis generation, and refinement, WorldLLM enables LLMs to
progressively update their internal representations and enhance their capacity as predictive
world models.

Finally, Chapter 5 further investigates the challenge of functionally grounding LLMs in
complex environments containing a vast—and potentially infinite—number of tasks. We
argue that achieving more general functional grounding of LLMs requires moving beyond
constrained environments and embracing open-ended learning setups. In such contexts,
prior work has explored autotelic RL agents that benefit from social guidance—where a
peer or teacher provides linguistic descriptions of events—drawing inspiration from how
caregivers support children’s learning. These agents use mechanisms such as hindsight
learning and off-policy RL to acquire diverse skills efficiently (Colas et al., 2022b).
Chapter 5 begins with the introduction of SAC-GLAM, an extension of the GLAM
approach that incorporates off-policy RL and hindsight relabeling. We show that SAC-
GLAM, by combining sample-efficient learning with socially guided feedback, significantly
accelerates the functional grounding process for LLMs. We then turn to another crucial
mechanism for autotelic agents: task prioritization, also known as automatic curriculum
learning (ACL). While Learning Progress-based approaches (Matiisen et al., 2017; Portelas
et al., 2020a; Kanitscheider et al., 2021) have proven effective, they do not scale well to large
task spaces. To overcome this, we introduce MAGELLAN, a method that extends the LLM-
based agent with metacognitive monitoring capabilities—that is, the ability to estimate
its own competence. By leveraging the LLM’s understanding of semantic relationships
between language-specified tasks, MAGELLAN learns to generalize competence estimates
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and Learning Progress across expansive task spaces. We show that MAGELLAN can:
(1) efficiently prioritize tasks for the agent, and (2) shape—or ground—the LLM’s
internal representations to align with the environment’s dynamics. The chapter concludes
by addressing scenarios in which tasks exceed the LLM’s capabilities but assistance
(e.g., calling another LLM) is available. Using MAGELLAN’s framework, we show
that metacognitive abilities enable LLMs to autonomously learn help-seeking strategies
through online interaction alone. Additionally, we demonstrate that these strategies can
adapt to a user-defined budget, balancing the maximization of task performance with the
minimization of the cost of external help, through a multi-objective bandit framework.

1.3.4 Collaborations

Every contribution presented in this manuscript is the result of collaborations with
multiple researchers, without whom none of this would have been possible. My two
advisors, Pierre-Yves Oudeyer (Inria) and Thomas Wolf (Hugging Face), participated
in every single contribution I present here. Most of the research in this manuscript is
also the result of a very fruitful collaboration with Thomas Carta (Inria), a fellow PhD
student. Thomas and I started our PhD adventure at roughly the same time, and from
our common research interests grew an efficient tandem. I was also very fortunate to
have many interactions with Thomas’s two non-Inria advisors: Olivier Sigaud (ISIR) and
Sylvain Lamprier (University of Angers). Together with Pierre-Yves, Thomas, Olivier,
and Sylvain, we co-authored GLAM and the follow-up grounding analysis (Chapter 3), as
well as SAC-GLAM and MAGELLAN (Chapter 5). Thomas Carta also co-supervised
two Master’s internships with me: Loris Gaven (now a PhD student in our team at Inria),
the first author of SAC-GLAM and MAGELLAN, and Guillaume Levy, the first author
of WorldLLM (Chapter 4). Cédric Colas, a former PhD student at Inria and now a
postdoctoral researcher at MIT, notably co-authored WorldLLM and MAGELLAN, in
addition to providing insightful feedback on most of the other projects. Nicolas Yax,
another PhD student (jointly at ENS and in our team) studying metacognition in LLMs,

was also actively involved and significantly impacted our work on this topic (Chapter 5).

I was also fortunate to collaborate with Olivier’s PhD student, Salim Aissi (ISIR), as
well as Salim’s other advisors, Laure Soulier (ISIR) and Nicolas Thome (ISIR), on the
study of GLAM’s functional grounding (Chapter 3). Salim is the first author and led
this project. Finally, the two projects described in appendices H and G were also the
result of collaborations. First, TeachMyAgent was the project carried out during my
Master’s internship at Inria. It was co-authored with Rémy Portelas (at that time a
PhD student and now a Research Scientist at Ubisoft), Pierre-Yves, and Rémy’s other
PhD advisor, Katja Hofman (Microsoft Research). The other project, Jack of All Trades
(JAT), was the result of a collaboration between Quentin Gallouedec (former INSA Lyon,
now at Hugging Face), Emmanuel Dellandrea (INSA Lyon), who was Quentin’s PhD
advisor, Edward Beeching (Hugging Face), and myself. Quentin led the project along
with Edward.

Most of the experimental studies presented in this manuscript were carried out using
the HPC resources of IDRIS under the allocation A0171011996 made by GENCI.

11
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1.3.5 Publications

Part of the material presented in this manuscript has been presented in the following
articles:

Conferences

Thomas Carta*®, Clément Romac*, Thomas Wolf, Sylvain Lamprier, Olivier
Sigaud, and Pierre-Yves Oudeyer. 2023. Grounding large language models in
interactive environments with online reinforcement learning. In Proceedings of the
40th International Conference on Machine Learning (ICML), Vol. 202, Article 150,
3676-3713. * equal contribution

Loris Gaven, Thomas Carta, Clément Romac, Cédric Colas, Sylvain Lamprier,
Olivier Sigaud, Pierre-Yves Oudeyer. 2025. MAGELLAN: Metacognitive predictions
of learning progress guide autotelic LLM agents in large goal spaces, Proceedings of
the 42nd International Conference on Machine Learning (ICML). Vol. 267.

Mohamed Salim Aissi, Clément Romac, Thomas Carta, Sylvain Lamprier, Pierre-
Yves Oudeyer, Olivier Sigaud, Laure Soulier, and Nicolas Thome. 2025. Rein-
forcement Learning for Aligning Large Language Models Agents with Interactive
Environments: Quantifying and Mitigating Prompt Overfitting. In Findings of the
Association for Computational Linguistics: NAACL 2025, pages 7030-7046.

Guillaume Levy, Cédric Colas, Pierre-Yves Oudeyer, Thomas Carta, Clément
Romac. 2025. WorldLLM: Improving LLMs’ world modeling using curiosity-
driven theory-making. Multi-disciplinary Conference on Reinforcement Learning
and Decision Making (RLDM).

Clément Romac*, Rémy* Portelas, Katja Hofmann, and Pierre-Yves Oudeyer.
2021. TeachMyAgent: A Benchmark for Automatic Curriculum Learning in Deep
RL. Proceedings of the 38th International Conference on Machine Learning (ICML),
139:9052-9063. * equal contribution

Workshops / Pre-prints

Loris Gaven, Clément Romac, Thomas Carta, Sylvain Lamprier, Olivier Sigaud,
Pierre-Yves Oudeyer. 2024. SAC-GLAM: Improving Online RL for LLM agents with
Soft Actor-Critic and Hindsight Relabeling. Intrinsically Motivated Open-ended
Learning (IMOL) Workshop, Neural Information Processing Systems (NeurIPS).

Quentin Gallouédec, Edward Beeching, Clément Romac, Emmanuel Dellandréa.
2024. Jack of all trades, master of some, a multi-purpose transformer agent. Align-
ing Reinforcement Learning Experimentalists and Theorists (ARLET) Workshop,
International Conference on Machine Learning (ICML).
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We begin by laying the foundations of this manuscript’s contributions: grounding the
functional competence of LLMs through interactions with an environment. This chapter
first provides a brief overview of the history of computational approaches to modeling
language understanding, highlighting the shift from symbolic methods to statistical
techniques, and how the grounding problem has shaped the field (Section 2.1). Then, to
better explore how embodied LLMs could be functionally grounded, Section 2.2 presents
an overview of strategies for learning situated and autonomous agents that solve goals,
with a focus on deep reinforcement learning and intrinsic motivation signals. Finally,
Section 2.3 discusses attempts at building LLM agents, as well as applying reinforcement
learning on LLMs.

2.1 Computational models of language understanding

The first prototypes of machines capable of understanding language emerged at the
very beginning of computer science. For instance, I discussed in Chapter 1 the program
ELIZA (Weizenbaum, 1966), a software that attempted to simulate a psychotherapist
using simple rules to transform what the patient said into questions that fostered the
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conversation. Another well-known attempt is SHRDLU by Winograd (1971), a program
that allowed users to interact with a virtual environment made of "blocks" through
language queries. From that point until today, the field of NLP (i.e., building machines
that process language) has been highly active and has undergone significant paradigm
shifts. The sections below provide a tentative and brief overview of this evolution. In
particular, the evolution of NLP cannot be separated from developments in linguistics,
psychology, and cognitive science regarding how humans learn and use language. For
this reason, the following sections will alternate between theoretical perspectives and
computational models.

2.1.1 Symbolic approaches

ELIZA and SHRDLU are both symbolic approaches: they rely on a set of pre-defined
symbols (e.g., words) and a set of pre-defined rules for processing these symbols. Symbolic
approaches were at the core of Artificial Intelligence for decades (Russell & Norvig, 2009).
In the context of language, the linguist Noam Chomsky laid the foundations of modern
linguistics with theories based on generative grammars—i.e., innate grammatical rules that
humans possess and that underlie all languages (Chomsky, 1957). These theories relied on
what is now considered a refuted claim: that children are not exposed to enough linguistic
input to acquire the richness of natural language, implying that innate grammatical
structures must exist. These ideas inspired the vast majority of early computational
models, which for decades relied on purely syntactic rules to process language queries
(Jones, 1994).

Meaning without grounding

However, several researchers have discussed the limitations of such approaches. In
particular, Searle (1980), and a few years later Harnad (1990), proposed thought experi-
ments highlighting that the meaning of words cannot be captured by systems solely based
on grammatical rules. The latter notably showed that symbols must be grounded in
something other than other symbols (i.e., rules for relating a symbol to others are not
sufficient) and raised the question of how such a grounding process occurs—known as the
Symbol Grounding Problem. These arguments were later supported by empirical results
in neuroscience, which showed that sensorimotor brain areas are involved when humans
process language (e.g., (Pulvermiiller et al., 2001; Glenberg & Kaschak, 2002; Scorolli
& Borghi, 2007; Chersi et al., 2010)). Soon after, the embodied cognition movement in
cognitive science also challenged the classical model of “amodal” (i.e., not related to any
perceptual inputs) symbol processing, in favor of a view of cognition as grounded in one’s
interactions with the environment (Barsalou, 1999; Pecher & Zwaan, 2005).

The functional role of language

This view that language is grounded in one’s experience is also predominant in
psychology among constructivists and developmentalists, such as Piaget (Piaget, 1954)
and Vygotsky (Vygotsky, 1962). The former, for instance, discussed schemas in which
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words’ meaning is associated with sensorimotor experiences. The latter notably argued
that language develops initially as a means to communicate with the child’s caregiver,
before being progressively internalized as a tool for structuring thought. Language is a
tool that emerges from and supports the development of the child’s cognitive capacities,
such as categorization, planning, and imagination (Mirolli & Parisi, 2011; Colas et al.,
2022a). All these findings gradually spread to linguistics, which moved away from innate
grammar theories toward a usage-based approach in which:

“ Language structure emerges from language use. ”— Tomasello (2003)

If language is tightly bound to sensorimotor experience, the precise nature of the
relationships between experience and word meaning remains largely unresolved (Mollo
& Milliere, 2023). The most direct—and arguably most extensively studied—form of
such grounding is referential grounding, i.e., the mapping between words and their
referents: objects, properties, or events in the world that linguistic expressions denote
(Cangelosi & Stramandinoli, 2018; Mollo & Milliere, 2023). However, referential grounding
represents only one facet of the broader grounding problem. As discussed by Cangelosi &
Stramandinoli (2018) and Mollo & Milliére (2023), multiple forms of grounding have been
proposed, and identifying which of these are necessary or sufficient for artificial systems
to meaningfully process natural language remains an open question.

Beyond the association between words and experiences, Roy (2005b) argued that
language also serves a functional role: it is used to act upon and control the environment
in order to achieve goals, a notion he refers to as functional meaning (see Figure 2.1).
Building on this perspective, Mahowald et al. (2024) recently introduced the concept of
functional competence, defined as the ability to use language effectively for goal-directed
behavior. Functional meaning also connects to classical philosophical approaches to
language, such as Conceptual Role Semantics (CRS), which grounds the meaning of
symbols in their functional role—namely, how they are used and manipulated in relation
to other symbols within a system (Harman, 1982).

Throughout this manuscript, we focus on grounding mechanisms that aim to endow
artificial agents with such functional competence.

Computational models of grounded language
understanding

Compared to early rule-based theories of language understanding, building computa-
tional models of grounded language remains a significant challenge. Such models must
operate within situated and embodied contexts while also accounting for the cognitive
processes that are deeply intertwined with language use and development.

Drawing from both developmental psychology and robotics, the field of developmental
robotics seeks to build computational models of human learning and development using
robotic agents. A key strength of this approach lies in its use of physically embodied
systems, which aligns with the strong emphasis in developmental and cognitive sciences on
the importance of situated, sensorimotor experience. As a result, developmental robotics
has made substantial contributions to the study of grounded language acquisition over the
past two decades (see reviews by Cangelosi et al. (2010); Cangelosi & Schlesinger (2015);
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Figure 2.1: Roy (2005b) identifies a duality in language meaning. In referen-
tial meaning, words are used to talk about a physical situation. In functional
meaning, words are used to achieve a goal.

Cangelosi & Stramandinoli (2018); Oudeyer et al. (2019)). These models are implemented
in robots capable of interacting with the physical world and social partners—whether
humans or other robots—and have been used to investigate a range of developmental
stages. Notably, they have provided support for theoretical hypotheses regarding the
cognitive mechanisms underlying language understanding.

For example, Roy (2005b,a) proposed a computational model based on Piagetian
schemas, in which a robot maintains and updates an internal world model to map natural
language instructions onto sequences of actions. In parallel, several models emphasized the
role of social interaction in language acquisition, particularly in learning to associate words
with objects (Steels, 2001; Steels & Kaplan, 2002; Dominey et al., 2009). For instance,
Dominey et al. (2009) demonstrated that social learning mechanisms can significantly
accelerate the acquisition of new vocabulary. In another line of work, Steels (2001)
introduced language games—interactive scenarios in which two embodied agents negotiate
and converge on shared labels for referents in their environment. Additionally, several
models underscore that understanding language acquisition requires consideration not
only of individual developmental timescales but also of the broader cultural evolution of
language (Kirby et al., 2014; Oudeyer et al., 2019).

Overall, Cangelosi et al. (2010) summarizes how language development is intercon-
nected with other cognitive skills in the broader process of cognitive development (see
Figure 2.2). Existing models have primarily focused on the interaction between language
and these related skills, such as motor control and social learning. A key aspect assumed
in many of these models is the presence of intrinsic motivation in the learner, which drives
active engagement in the learning process (Cangelosi & Schlesinger, 2015). While some
models take this motivation as a given, others—such as the model proposed by Oudeyer
& Kaplan (2006)—explicitly investigate how intrinsic motivation supports language acqui-
sition, for example by guiding exploration and enabling the emergence of communication
abilities. Importantly, Oudeyer & Kaplan (2006); Moulin-Frier et al. (2014); Oudeyer
& Smith (2016) showed that curiosity-driven learning alone can explain the emergence
of vocal speech and language. This emergence first starts through babbling and the



Computational models of language understanding 17

—

Action development | N Social development
(act on inanimate objects) (act on people) r

Conceptualization
(emergence of concepts)

}

Language
(emergence of)

Motivations

Figure 2.2: The connections between actions, social learning, concepts, and
language illustrated by Cangelosi et al. (2010). Actions and social learning
drive the emergence of concepts, which themselves drive the emergence of
language further used in actions and social learning. Importantly, intrinsic
motivation supports the development of these cognitive skills.

imitation of their caregivers. But progressively, children discover that vocal speech (and
eventually language) can be used to affect and influence their caregivers, discovering
the functional meaning of language.

In terms of grounding mechanisms, computational models have explored multiple
forms of grounding. The most immediate and extensively studied form in developmen-
tal robotics is known as direct (or referential) grounding (Cangelosi & Stramandinoli,
2018; Mollo & Milliére, 2023). This form aligns closely with the concept of referential
meaning described by Roy (2005b), wherein the robot learns to associate words with
experiences—such as naming observed objects or describing performed actions. Direct
grounding thus involves mapping linguistic symbols to representations in other modalities.
Numerous computational models have been proposed to support this form of grounding,
as reviewed by Roy (2005a) and Cangelosi et al. (2010). A further challenge in grounded
language modeling involves the representation and learning of abstract concepts, for
which the contribution of sensorimotor experience is less well understood (Cangelosi &
Stramandinoli, 2018; Mollo & Milliére, 2023). In this context, grounding transfer (also
called relational grounding by Mollo & Milliére (2023))—i.e., grounding abstract symbols
by linking them to already grounded concrete symbols—has been identified as a promising
direction (Cangelosi & Stramandinoli, 2018). To support such symbolic connections,
Thill et al. (2014) emphasized the potential of statistical methods from distributional
semantics (e.g., (Turney & Pantel, 2010; Boleda, 2020)) to capture relationships between
abstract and concrete concepts, enabling symbolic systems to inherit meaning from
previously grounded terms. This emphasis on non-symbolic approaches for grounding
transfer is not an isolated trend in developmental robotics. As noted by Oudeyer et al.
(2019), many computational models integrate machine learning techniques, and several
even combine symbolic and statistical approaches. Moreover, computational models of
language acquisition often integrate and reveal the interplay between multiple learn-
ing paradigms—including supervised, unsupervised, and reinforcement learning—each
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contributing to different aspects of the acquisition process.

Collectively, a wide array of models has been proposed by developmental roboticists to
study grounded language acquisition and understanding. These models are grounded in
theories that place sensorimotor experience (and curiosity-driven learning) at the core of
cognitive and linguistic development—contrasting sharply with early syntactic rule-based
theories of language understanding, which have been criticized for their lack of grounding
and inability to capture meaning. Grounded computational models have provided useful
empirical support for grounded theories of language. However, despite their strengths,
these models face notable limitations. Most rely on carefully engineered, domain-specific
architectures tailored to the particular cognitive processes under investigation, making
it difficult to scale them toward the acquisition of the rich, complex structures found in
natural human language. Moreover, many grounded models underutilize recent advances
in statistical machine learning, particularly deep learning, which limits their ability to
capture the complex statistical regularities that characterize real-world language use.

2.1.2 Statistical approaches

Distributional semantics is the research area that studies how the meaning of words
can be captured from statistical patterns in the contexts in which they typically appear.
Pioneering works by Firth (1957) and Harris (1954) laid the foundations for the revolution
that occurred within the NLP field in the early 2010s.

“You shall know a word by the company it keeps. ” — Firth (1957)

While early models of distributional semantics had been proposed before this revolution
(e.g., (Dumais, 2004; Blei et al., 2003)), the amount of data accessible on the internet,
the increase in computing power, and the development of ML approaches contributed to
making distributional semantics approaches ubiquitous. In particular, a large number
of works studied how neural network-based approaches could be used to produce vector
representations of words based on large corpora (e.g., (Bengio et al., 2003; Turney &
Pantel, 2010; Turian et al., 2010; Mikolov et al., 2013; Goldberg, 2016)). An example,
illustrated in Figure 2.3, is the Word2Vec method from Mikolov et al. (2013), which learns
vector representations of words by learning to predict which word best fits a context of
other words (Continuous Bag Of Words, CBOW, approach) or which context a word
would best fit in (skip-gram approach). These representations can then be used to solve
specific NLP tasks such as entity recognition, summarization, language generation, or
translation.

In fact, such models do not use words but what are called tokens—a set of integers
that are associated with words, subwords, punctuation, etc. Several methods exist for
transforming a text (a sequence of characters) into a sequence of tokens. They mainly differ
in how they break down words into subwords, usually leveraging pre-defined mappings
or learning the mapping from a corpus (e.g., (Gage, 1994; Schuster & Nakajima, 2012;
Sennrich et al., 2016; Kudo, 2018; Song et al., 2021)).
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Figure 2.3: The two possible architectures of Word2Vec (Mikolov et al.,
2013). A neural network learns vector representations of words by either (1)
learning to predict which word best fits a context of other words (Continuous
Bag Of Words, CBOW, approach) or (2) which context a word would best
fit in (skip-gram approach).

From recurrent neural networks to Transformers

One task that has been of particular interest to the NLP community since its earliest
days is machine translation (see, for example, (Hutchins, 2004)). Within the NLP
revolution, neural network-based approaches also transformed translation and became
known collectively as neural machine translation (NMT) (Kalchbrenner & Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014). Because translation is considered a sequence-
to-sequence task in NLP (i.e., given an input sequence of tokens in one language, the
goal is to generate an output sequence of tokens in another language), NMT models
typically adopt an encoder-decoder architecture composed of two neural networks—often
recurrent models such as LSTMs (Hochreiter & Schmidhuber, 1997): (1) an encoder
network, which reads the input sequence and produces a single vector representation of it,
and (2) a decoder network, which generates the output sequence (see Figure 2.4). Each
decoder block produces a probability distribution over the next possible token. The entire
architecture is trained to maximize the likelihood of the expected output sequence (i.e.,
maximizing the likelihood of the next token given the previous ones), a training objective
known as causal language modeling (CLM).

{ Encoder i :'/ |

Decoder

Je suis malade  <s> </s>

Figure 2.4: An example of an encoder-decoder architecture for NMT from
French to English. Green arrows represent the flow of vector representations
between words (i.e., the hidden state when using classic recurrent neural
networks or the hidden state and memory when using LSTMs). Beginning
of sequence ("< /s>") and end of sequence ("<s>") tokens are used to start
and stop decoding the output sequence.
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However, these architectures suffer from a major bottleneck: a single vector represen-
tation encodes the entire input sequence. To overcome this limitation, Bahdanau et al.
(2014) proposed the additive attention mechanism, which allows the decoder to access
the vector representations produced by the encoder for each individual token of the input
sequence. Specifically, additive attention learns a function (i.e., a neural network) that
computes a similarity score between the current internal state of the decoder (called the
query) and each representation produced by the encoder (called the keys). Based on
these similarity scores, attention weights are computed (via a softmax function), and
the decoder receives a weighted sum of all input representations (called the values). By
enabling the decoder to "attend" to different parts of the input sequence as it generates
the output, this mechanism led to state-of-the-art results in machine translation.

Two years later, Vaswani et al. (2017) introduced a new encoder-decoder architecture
for NMT that eliminated recurrent neural networks (RNNs) entirely, relying instead on
attention mechanisms and parallel computations across multiple representations (called
heads) for each token. When processing a token, each head in a specific layer performs
self-attention (i.e., a learned projection is used to compute the query for the current
token, while two other learned projections produce the keys and values for all tokens),
followed by feed-forward neural networks and residual connections (He et al., 2016).
The outputs of all heads are then aggregated through a learned linear projection and
passed to the next layer. This architecture, named the Transformer, not only achieved
impressive results but also improved training stability and introduced highly parallelizable
operations, making it feasible to train much larger models (i.e., with significantly more
parameters). Like earlier architectures, transformers use an encoder-decoder setup. In
particular, the encoder is bidirectional, meaning that each token attends to all other
tokens in the input sequence—including those that follow. While bidirectional encoders
existed prior to transformers (e.g., (Schuster & Paliwal, 1997)), they were significantly
more difficult to train. The transformer encoder produces one vector representation
per input token, forming a matrix. The decoder then autoregressively generates the
output sequence—one token at a time—by computing the probability distribution over
the next token using self-attention over previous output tokens and cross-attention over
the encoder’s representations.

Representational properties of transformers

Following the introduction of this new architecture, a line of research focused on
the representational capacities of transformers. First, Radford et al. (2018) introduced
Generative Pre-training (GPT), a model that uses only the decoder component of the
transformer and is trained with CLM on large, general-purpose corpora. This model can
then be adapted to specific NLP tasks (e.g., entity recognition, question answering) by
fine-tuning it on data related to the target task. The idea of pre-training a model to
learn general-purpose representations and then fine-tuning it for specific tasks was largely
inspired by similar trends in computer vision (e.g., (Girshick et al., 2013; Donahue et al.,
2014)). Building on this idea, Devlin et al. (2019) proposed BERT, a similar approach
based on encoder-only transformers. The authors demonstrated that the bidirectional
nature of the encoder leads to improved representations. Since each token in the encoder
has access not only to preceding but also to following tokens, CLM is no longer suitable.
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Instead, Devlin et al. (2019) used a masked language modeling (MLM) objective: randomly
selected tokens in the input sequence are replaced with a special mask token, and the
model is trained to predict the original tokens. BERT’s representational abilities were
extensively studied in a line of work known as “BERTology” (e.g., see the survey by
Rogers et al. (2020)), which revealed its strengths in capturing syntactic knowledge (e.g.,
hierarchical structure (Lin et al., 2019)) and some aspects of semantic understanding
(e.g., relationships between entities (Tenney et al., 2019)), while showing limitations in
encoding world knowledge (e.g., (Forbes et al., 2019)).

Language models

Parallel to this, Radford et al. (2019) proposed GPT-2. This new model resembles
GPT in all its technical aspects, but its underlying philosophy changes drastically: instead
of producing a pre-trained backbone that must be fine-tuned for each specific task, the
authors proposed that every NLP task could be approached through natural language
generation. Their intuition was that a model trained solely to generate text (i.e., using
CLM) could solve any NLP task by receiving a textual description of the task as input
and generating the corresponding answer. To test this, Radford et al. (2019) trained a
large transformer model (with up to 1.5 billion parameters, compared to BERT’s 340
million) using a vast and curated dataset of web pages crawled from the internet. This
language model (i.e., a model predicting the next token and trained with CLM) achieved
state-of-the-art performance on most evaluation benchmarks in a zero-shot setting—i.e.,
without being specifically designed or fine-tuned for those tasks. In their conclusion, the
authors stated:

“When a large language model is trained on a sufficiently large
and diverse dataset it is able to perform well across many domains
and datasets. ” — Radford et al. (2018)

Large language models, or LLMs, were born. From that point onward, a wide array
of LLMs using decoder-only transformers and trained following the same paradigm as
Radford et al. (2019) were developed. This includes, for instance, T5 (Raffel et al., 2020),
GPT-3 (Brown et al., 2020), BLOOM (Scao et al., 2022), Gopher (Rae et al., 2022), PaLM
(Chowdhery et al., 2022), and Llama (Touvron et al., 2023). Since GPT-2, few changes
have been made to the overall architecture or training objectives. Among the most
notable developments is that LLMs are now routinely fine-tuned to follow instructions
and generate text aligned with human preferences (e.g., (Ouyang et al., 2022; Rafailov
et al., 2023)). From few-shot learning—also known as in-context learning, the ability to
adapt to new tasks given only a few examples—to reasoning, LLMs now demonstrate
unprecedented capabilities across a broad range of tasks, extending beyond NLP (e.g.,
playing video games (Wang et al., 2023a) or contributing to scientific research (Lu et al.,
2024)). These capabilities have led to the widespread deployment of LLMs in applications
used by an ever-growing number of users (e.g., ChatGPT).
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Limits of LLMs

The NLP community has come a long way—from early rule-based approaches such as
ELIZA (Weizenbaum, 1966) to modern LLMs. While, at first glance, the longstanding
goal of building machines that understand natural language appears nearly achieved
with LLMs, the question of whether meaning can exist without grounding remains open
(Bender & Koller, 2020; Bisk et al., 2020; Merrill et al., 2021; Piantadosi & Hill, 2022;
Mollo & Milliere, 2023; Pavlick, 2023; Gubelmann, 2024). Even before the advent of
LLMs, studies such as Lucy & Gauthier (2017) and Kiela et al. (2016) questioned and
empirically demonstrated the limitations of distributional semantics in capturing meaning
without grounding. For LLMs, various studies have investigated which aspects of meaning
can be captured through CLM alone. For instance, Abdou et al. (2021) and Patel et al.
(2020) showed that LLMs can encode conceptual structures resembling those found in
perceptual spaces (e.g., color categories or spatial relationships like cardinal directions).
Bender & Koller (2020) further reviewed evidence that some LLM abilities are driven
by shallow syntactic heuristics. More recently, Shojaee et al. (2025) investigated the
limitations of LLMs’ reasoning abilities, showing that performance breaks down beyond a
certain task complexity—even when hints are provided. This aligns with broader findings
on LLMs’ limited multi-step reasoning capacities (Valmeekam et al., 2022; Wu et al.,
2024). In particular, Mahowald et al. (2024) demonstrated that the overall functional
competence of LLMs—i.e., their ability to use language effectively in real-world, goal-
directed contexts—remains underdeveloped.

These limitations, together with the previously discussed evidence from linguistics,
developmental psychology, and cognitive science on the role of sensorimotor grounding
in language, have motivated several position papers advocating for the integration of
distributional semantics with embodied learning approaches (Kiela et al., 2016; McClelland
et al., 2019; Bender & Koller, 2020; Bisk et al., 2020; Tamari et al., 2020).

Multimodal LLMs

Bisk et al. (2020) identified the use of perceptual data (e.g., images) in addition to text
during the training of LLMs as a natural way to improve their grounding. Joint training on
perception and text closely relates to direct grounding (Cangelosi & Stramandinoli, 2018),
i.e., the mapping of symbols into other modalities. Prior to LLMs, several works explored
the multimodal training of distributional semantic models, from classic neural networks
(Howell et al., 2005; Mikolov et al., 2013) to transformers (Sun et al., 2019; Li et al., 2020;
Chen et al., 2020b; Su et al., 2020; Zhang et al., 2021; Radford et al., 2021). Such joint
training was shown to yield partial improvements in the learned representations (Yun
et al., 2021). Regarding LLMs, the recent trend of VLMs investigates how to build models
that process both text and visual input (e.g., images or videos). A common approach
is to train or fine-tune a visual encoder to produce representations compatible with an
LLM—either by generating token embeddings directly (see Figure 2.5) or by inserting
additional attention layers into the LLM (Cho et al., 2021; Tsimpoukelli et al., 2021;
Alayrac et al., 2022; Laurengon et al., 2023; Chen et al., 2023; Laurengon et al., 2024).
These models are typically fine-tuned using datasets that pair images with text (e.g.,
captions or visual question-answering examples), or web documents in which images and
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text are interleaved (Laurengon et al., 2023). However, beyond visual question answering,
the broader capabilities of current VLMs—such as reasoning—have been shown to be
limited (Wang et al., 2024a; Aissi et al., 2025).

Up to Hidden states
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Figure 2.5: In Idefics2 (Laurengon et al., 2024), a visual encoder produces

multiple token embeddings per image, which are then given to an LLM.
Training usually involves fine-tuning both the visual encoder and the LLM.

Tr

In parallel, the integration of actions—in addition to perceptual inputs—into multi-
modal language models has also been explored. In particular, passive learning schemes
such as behavioral cloning (i.e., imitating an expert’s behavior by maximizing the like-
lihood of its actions) have been applied. Passively observing and imitating sequences
of actions has been shown to be sufficient for encoding the meaning of certain words
(Ebert et al., 2022). For example, Jiang et al. (2023b) and Brohan et al. (2023) trained
multimodal transformers to control robots using datasets that combine task specifications
with associated sequences of actions. These specifications include both perceptual inputs
(e.g., images) and text (e.g., instructions). Reed et al. (2022) extended this idea with
a model named Gato, which was trained to both imitate expert trajectories—i.e., se-
quences of actions in games and robots—and generate natural language. Their approach
combines CLM, behavioral cloning, and CLM on multimodal inputs for visual question
answering. In a similar vein, our work on the Jack of All Trades (JAT) model, described
in Appendix G, proposes a unified approach. We collected a large-scale, open dataset
consisting of 34 million expert trajectories from RL tasks across four domains, 250 million
text documents, and 2.6 million text-image pairs. We then trained a single transformer
model using the same objectives as Reed et al. (2022): CLM (on both text-only and
text-image inputs) and behavioral cloning. When evaluated as a policy on the RL tasks,
JAT achieves an overall 65.8% of the expert score (see Figure 2.6). However, we found that
JAT’s natural language generation capabilities remain limited. Moreover, we introduced
an auxiliary objective on expert trajectories: predicting the next observation—i.e., how
the environment changes as a result of an action. We showed that this objective improves
performance on RL tasks. Often referred to as forward modeling, this mechanism closely
relates to world modeling and will be further discussed in Section 2.2 and Chapter 4.

While JAT and Gato do not leverage any pre-trained LLM, Driess et al. (2023)
proposed a VLM trained on a dataset that includes robotics tasks in which the actions are

expressed not as low-level commands but as textual instructions for a low-level controller.

Zitkovich et al. (2023) introduced RT-2, a similar model capable of directly producing
low-level actions for a robot. RT-2 is trained using behavioral cloning to generate these
actions. Other works, discussed in Section 2.3, have explored how LLMs or VLMs can
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Figure 2.6: Aggregated expert normalized scores (interquartile mean, IQM,
and mean) of JAT, with 95% Confidence Intervals for each RL domain as a
function of learning steps.

be turned into agents that take actions to interact with an environment (e.g., in robotic
settings).

In conclusion, this section has traced the evolution of the NLP’s central challenges:
building models of language understanding. Early attempts that relied solely on grammars
and syntactic rules were shown to be insufficient for capturing meaning. In contrast, a
substantial body of evidence from linguistics, psychology, and cognitive science emphasizes
that language is grounded in one’s sensorimotor and social experiences. This perspective
led to the development of various grounded language models, particularly within develop-
mental robotics. These models notably provided strong evidence for grounded language
understanding. In parallel, statistical methods—especially distributional semantic models
based on neural networks—have advanced significantly. Initially concerned with generat-
ing vector representations of words and sentences, the field has shifted toward training
LLMs: generalist models capable of performing a wide range of NLP tasks through lan-
guage generation, learned from massive internet-scale datasets. These models are purely
statistical learners, yet they exhibit remarkable capabilities that suggest they capture
key aspects of meaning. This is not entirely unexpected, as earlier distributional models
already demonstrated an ability to capture conceptual relationships. These findings align
with usage-based linguistic theories, which stress the importance of statistical learning in
human language acquisition, and with insights from developmental robotics, which view
statistical learning as a potential mechanism for grounding abstract concepts by relating
them to concrete concepts grounded in experience. Nonetheless, many of these capabilities
may be misleading, as humans tend to attribute intelligence too readily. Crucially, the
lack of grounding in sensorimotor experience remains a significant limitation for the future
development of LLMs.

2.2 Computational models of action learning

Building computational models of decision-making has a long history in artificial
intelligence. In this section, however, I will focus on the area most relevant to the
present research: reinforcement learning (RL). RL encompasses a family of sequential
decision-making problems in which an agent must perform a series of actions to maximize
the cumulative reward received after each action. Before delving into RL itself, I will
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first introduce key foundational concepts—such as the action-environment interaction
framework and Markov Decision Processes—and briefly discuss alternative approaches
that may be preferable in certain contexts.

2.2.1 The agent-environment framework

A fundamental concept in artificial intelligence is the notion of an agent. An agent is
an entity equipped with sensors and actuators. It is situated in an environment, which
it can observe through its sensors and modify using its actuators (Russell & Norvig,
2009). We formalize this by attributing to the environment an internal state s € S,
which encodes all relevant aspects of the environment. In the simplest case, we assume
a setting with perfect information (also called fully observable), in which the agent can
observe the entire current state of the environment through its sensors. We also define
a space of possible actions A that the agent can perform via its actuators. Within this
agent-environment framework, the agent alternates between observing the current state of
the environment s;, performing an action a; € A, and then observing the resulting state
s¢r1- Central to RL, we also assume that, in addition to observing the new state s;, 1, the
agent receives a scalar reward 1, for the action it took. This reward is typically tied
to a specific task (also referred to as a goal) that the agent is expected to accomplish.
These interactions between the agent and its environment are classically illustrated in
Figure 2.7.

action a

| l
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Figure 2.7: Agent-environment framework in which an agent interacts with
an environment by observing its state s, performing an action a, observing
the new state, and a reward 7.

The sequence of interactions with the environment (where a single interaction is called
a step and a sequence of steps a trajectory) can be either infinite or finite, depending on
the problem. Finite trajectories may be bounded by a maximum number of steps or by
termination conditions (e.g., task completion). When such sequences are bounded, the

problem is referred to as episodic, and a single sequence from ¢ = 0 to T is called an episode.

This agent-environment framework has served as the foundation for the development
of decision-making systems across various domains, including control (Bellman, 1957),
economics (White, 1993), and games (Mnih et al., 2015).
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Bandits

One particular problem that falls under the agent-environment framework is the case
where only a single step has to be performed (i.e., episodes last for a single step). The
agent must therefore select the action that yields the maximum immediate reward (i.e.,
the reward obtained after a single action). To address this, a substantial body of work has
emerged under the umbrella of bandit methods. When dealing with a discrete action space
A—and where the state has no influence on the optimal strategy— Multi-Armed Bandit
approaches have been extensively studied (e.g., (Lai & Robbins, 1985; Auer et al., 2002a,b;
Langford & Zhang, 2007)). These methods typically aim to minimize the cumulative
regret, i.e., the difference between the reward obtained by the chosen action and the
maximum reward that could have been achieved by selecting the optimal action:

N

Z(mémx Tam — Tn)

n=1

with IV the total number of episodes. When the state influences the decision, methods
known as contextual bandits have also been studied for cumulative regret minimization
(e.g., (Li et al., 2010; Lu et al., 2010; Valko et al., 2013)).

One important aspect of this bandit scheme is that it constitutes an active learning
process: the agent performs an action, receives a reward, and must adapt its behavior to
progressively converge toward the optimal one. Moreover, minimizing cumulative regret
implies seeking methods that require the fewest episodes to discover optimal behavior.
I intentionally used the verb discover to highlight a central challenge common to all
methods tackling agent-environment problems with active learning (e.g., bandits, but
also RL): exploration. The agent must explore the space of possible strategies to identify
the optimal one. However, it must also ezploit the strategies it has already discovered to
evaluate them and continue using one if it proves optimal. As a result, the agent faces a
dilemma between exploration and exploitation.

Imitation Learning

In bandits, we assumed no access to any external help or a demonstrator showing
how to behave. When an expert agent is available, one can learn to imitate it using
demonstrations of trajectories (i.e., a dataset of transitions < sy, as, 7411, S¢+1 >). Methods
studying how to best leverage such demonstrations are known as imitation learning
methods. The most naive approach assumes that the expert follows the optimal strategy.
In that case, the agent simply needs to clone the observed behavior—i.e., maximize the
likelihood of selecting a; from s; (e.g., (Pomerleau, 1988; Argall et al., 2009; Gallouédec
et al., 2024)). Rajaraman et al. (2020) and Kumar et al. (2022) notably discussed the
limits and conditions under which imitation learning and behavioral cloning (BC) are
effective. In particular, naive BC assumes access to optimal demonstrations. When
suboptimal demonstrations are present, methods such as Reward Weighted Regression
(Peters & Schaal, 2007) or Advantage Weighted Regression (Peng et al., 2021) apply
weights to transitions or trajectories to favor higher-quality data, while others propose
filtering to retain only high-quality transitions (e.g., (Chen et al., 2020a)). Additionally,
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due to its passive learning scheme, imitation learning requires a sufficiently diverse dataset
to enable the agent to behave appropriately across all possible encountered states. Finally,
several works have studied the general limitations of imitation learning in capturing causal
relationships (e.g., (Rajaraman et al., 2020; Lampinen et al., 2023; Gasse et al., 2023)).

Markov Decision Processes

When doing active learning in environments with interactions longer than one step
(i.e., not bandits), the classical setting is to frame the environment as a Markov Decision
Process (MDP) M = (S, A, T, R,~) with:

e S: the space of possible states for the environment
e A: the space of possible actions in the environment

e T:SxAxS[0,1]: the transition function giving the probability of transitioning
from a state s to a state s’ by taking action a

o R:S5 x A~ R: the reward function

e ~: a discount factor

The agent’s strategy is formalized as a stochastic and Markovian policy function
m: 8 x A [0,1], which gives the probability of selecting action a in state s. The policy’s
performance is measured by the cumulative discounted rewards obtained in a trajectory
collected under 7 (also called the return):

oo
_ k
G, = E Y Ttrk4+1
k=0

This return can also be defined from a specific state s;, which is called the value:
Vﬂ—(S) = Eﬂ- [Gt|5t = S]

Or even from a specific state-action pair s;, a;,—i.e., the expected return from taking
action a; in state s;:

Qr(s,a) = E;[G|s; = s,a; = a

When the complete MDP is known to the agent, Dynamic Programming approaches
such as Policy Iteration or Value Iteration can be used (Bellman, 1957). However, when
the inner MDP is unknown to the agent, it must explore the environment and discover
the optimal policy through trial-and-error: this is reinforcement learning.

2.2.2 Reinforcement learning

Reinforcement learning studies the problem of solving an unknown MDP (Sutton
& Barto, 2018). Methods are usually grouped into two families: model-free and model-
based. Model-free methods directly learn a policy by interacting with the environment.
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Model-based methods use interactions to learn a model of the MDP, which can then
be used for planning (i.e., selecting actions) or for learning the policy by interacting
with the model instead of the environment. Learning a model of the MDP notably
involves learning the transition function, usually called a forward model. In the present
research, we mostly focus on model-free approaches, except in Chapter 4, where a forward
model is learned—mnot for planning or policy learning, but to foster exploration of the
environment by rewarding transitions that are poorly predicted (this will also be discussed
in Section 2.2.3).

Value-based approaches

Among model-free RL approaches, value-based methods learn a policy by alternating
between estimating the current policy’s value (or Q-value) over encountered states and
updating the policy according to this value estimation. Updating the value estimate is
typically achieved using complete trajectories (this is called a Monte Carlo estimation)
or using partial trajectories with Temporal Difference (TD) learning (Sutton & Barto,
2018). TD learning computes the estimation error (called the TD error) based on a partial
trajectory by bootstrapping—i.e., using the current value estimate to approximate the
ground truth. The most straightforward method for updating a Q-value function with
TD uses single transitions (see Sutton & Barto (2018) for details about TD learning) and
applies the following update rule:

Qr (51, a1) — Qr(se,a1) + a(re41 + YQr (8141, Arg1) — Qr (St ar))

Based on this Q-value estimation, updating the policy can simply be achieved by
selecting the action with the maximal Q-value:

7(s;) = argmax Q. (s, a)
acA
Note that this policy is deterministic and requires another mechanism for exploration
(e.g., e-greedy, discussed below).

This update approach is implemented in the SARSA algorithm (Sutton & Barto,
2018). Watkins & Dayan (1992) later introduced Q-learning, a related method in which
the TD error is computed not using the Q-value of the action taken by the policy at time
t + 1, but instead by using the maximum Q-value among all possible actions under the
current Q-value estimation:

Qr (51, a1) < Qr(51,a¢) + a(ripr + Vréleaj(Qw(Stﬂ,a) — Qx(51,a1))

Such an approach is called off-policy, as it uses information (here, the Q-value of the
next action) that does not come from the current policy. Off-policy approaches are
generally known for being more sample-efficient and better suited to support exploration
mechanisms.

As an example, Q-learning and SARSA are usually implemented using an e-greedy
action selection scheme for exploration: with probability 1 — €, the action is selected by
the policy (i.e., taking the action with the maximal Q-value), and with probability €, the



Computational models of action learning

action is selected randomly. In SARSA, this stochasticity is integrated into the Q-value
estimation, while Q-learning, which always assumes optimal action selection, ignores it.
Both SARSA and Q-learning require the storage of a Q-table: a table containing the
current Q-value estimation of all state-action pairs.

Deep RL

Scaling to more complex environments, one cannot store or even know the set of all
possible state-action pairs. This is particularly the case in environments where states are
represented by continuous values. To overcome this, several works proposed approximating
the Q-value using a neural network (e.g., (Riedmiller, 2005; Mnih et al., 2015)). The
Deep Q-Network (DQN) proposed by Mnih et al. (2015) was a major breakthrough in RL
that successfully applied Q-learning to a large set of Atari video games (Bellemare et al.,
2013). This Q-network @y is a neural network that takes a state as input and outputs
the Q-value of each possible action. Mnih et al. (2015) addressed the known instability
issues of such Q-value estimators by computing the loss over transitions sampled from a
buffer D, and by using a second network Qg—updated less frequently—to stabilize the
TD errors:

'C(e) = E(s,a,r,s’)NU(D) |:(T + ’YIH;}X QO’(S/7 a/) - Q0(87 a))2i|

One major limitation of the DQN is that its policy plays by computing the Q-value of
all the possible actions. When actions are continuous values—as is the case, for instance,
in robotics setups—DQN can no longer be used. Instead, policy-based approaches seek
to directly learn a parametric policy function my using the Policy Gradient Theorem
(Sutton & Barto, 2018). These methods learn a neural network-based policy through
gradient ascent to maximize the policy’s expected return. As with value-based approaches,
the question is how to estimate the policy’s expected return over the MDP. Williams
(1992) proposed REINFORCE, where Monte Carlo estimations are used. However,
such estimations are known to produce high-variance in the gradient estimates. Other
methods, usually named Actor-Critic, learn an additional critic network: a neural network
estimating the return or substitutes used to compute the gradient, such as the value, the
Q-value, or the advantage (A(s,a) = Q(s,a) — V(s)). Methods such as A2C (Mnih et al.,
2016), DDPG (Lillicrap et al., 2016), or SAC (Haarnoja et al., 2018) use TD learning
to estimate a Q-value, while methods such as TRPO (Schulman et al., 2015) or PPO
(Schulman et al., 2017) estimate the advantage and the value.

There are two important characteristics of policy gradient methods for the present
research. First, most methods are on-policy. Among the off-policy ones are SAC, DDPG,
and ACER (Wang et al., 2017). As in the value-based approaches previously discussed,
DDPG uses a deterministic policy. For SAC and ACER, as well as most policy gradient
approaches, a stochastic policy outputting a probability distribution over the possible
actions is learned. Deterministic policies require external exploration mechanisms (e.g.,
e-greedy), while stochastic policies’ exploration—which samples actions from an estimated
probability distribution—is generally controlled by maintaining a high entropy on the
actions’ probability distribution.
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2.2.3 From curiosity-driven to autotelic RL agents

Exploring the environment is a key challenge for RL approaches. In Section 2.2.1,
I discussed the exploration versus exploitation dilemma for learning an optimal policy
through interactions with an environment. Moreover, many environments feature sparse
reward settings, where most transitions result in a reward equal to zero. In such settings,
the agent must efficiently explore the environment to discover rewarding transitions.
Applying RL methods usually leads to poor results or requires an unreasonable number of
interactions for classic exploration mechanisms (i.e., random action selection) to properly
explore the environment.

Knowledge-based intrinsic motivations

Humans are known to explore their environment, and a large body of work has drawn
attention to intrinsic motivation signals and curiosity-driven learning (Berlyne, 1954;
White, 1959; Kidd & Hayden, 2015; Oudeyer & Smith, 2016; Gottlieb & Oudeyer, 2018).
As a result, various computational models of intrinsic motivation have been proposed (e.g.,
see the surveys from Schmidhuber (1991b); Oudeyer & Kaplan (2007); Baldassarre &
Mirolli (2013); Aubret et al. (2019)). Oudeyer & Kaplan (2007) notably grouped intrinsic
motivations into two categories: knowledge-based and competence-based. Knowledge-
based signals motivate the agent to collect new information and acquire new knowledge.
These methods are usually integrated into RL by introducing an additional reward (called
an intrinsic reward). This includes novelty (e.g., discovering unknown states) (Bellemare
et al., 2016; Stanton & Clune, 2018; Burda et al., 2019a; Raileanu & Rocktéschel, 2020),
empowerment (Klyubin et al., 2005; Still & Precup, 2012; Gregor et al., 2017), surprise
(Achiam & Sastry, 2017; Berseth et al., 2021), uncertainty (Burda et al., 2019b; Sukhija
et al., 2025), prediction error (Schmidhuber, 1991a; Pathak et al., 2017), or information
gain over prediction error (Schmidhuber, 1991a; Oudeyer & Kaplan, 2007; Lopes et al.,
2012; Houthooft et al., 2016). Such intrinsic rewards have been shown to be useful for
learning a forward model of the MDP (Lopes et al., 2012; Schmidhuber, 1991a; Kim
et al., 2020), as well as for solving environments with extremely sparse reward settings
(Bellemare et al., 2016; Pathak et al., 2017).

Autotelic agents

The other category identified by Oudeyer & Kaplan (2007) is competence-based
motivation signals. These intrinsic motivations no longer focus on the agent’s ability to
"know" the world but rather to control it. In particular, competence-based approaches
focus on goals that an agent selects to learn. This autotelic principle (Steels, 2004) plays
an important role in human cognition (White, 1959; Elliot & Fryer, 2008; Oudeyer &
Kaplan, 2007). Integrating this form of motivation into RL learners was called autotelic
RL agents (Colas et al., 2022b), i.e., agents that set their own goals and learn to solve
them through RL (see Figure 2.8). Setting a goal requires two steps: 1) sampling a
point in a multi-dimensional goal space G and 2) conditioning a goal-conditioned reward
function R : S x A x G — R (Colas et al., 2022b; Sigaud et al., 2024). There are
multiple challenges when designing an autotelic RL agent: 1) defining G, 2) defining
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R, 3) defining a goal-selection scheme, and 4) learning a policy 7. The last challenge is
usually achieved using goal-conditioned RL, in which the policy (and value function if
needed) is conditioned on the goal to achieve (Schaul et al., 2015). The use of off-policy
approaches plays a crucial role in exploiting noisy and sparse reward signals induced by
self-generated goals (Colas et al., 2020).
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Figure 2.8: From goal-conditioned RL agents to autotelic RL agents (Colas
et al., 2022a).

Defining the goal-selection scheme is a mandatory requirement, as the goal space
might be too large for the agent to master all goals. Additionally, some goals might
be impossible, or the possibly varying difficulty across goals may require the agent to
prioritize which goal to learn next. The field of automatic curriculum learning (ACL) has
notably proposed methods to address this goal-selection challenge:

“ Automatic Curriculum Learning (ACL) [...] is a family of mech-
anisms that automatically adapt the distribution of training data
by learning to adjust the selection of learning situations to the
capabilities of Deep RL agents. ” — Portelas et al. (2020b)

ACL methods have leveraged various forms of intrinsic motivations to select goals,
such as intermediate difficulty (Florensa et al., 2018; Racaniere et al., 2020; Castanet et al.,
2023; Rutherford et al., 2024), regret (Dennis et al., 2020; Jiang et al., 2021a; Parker-
Holder et al., 2022), or Learning Progress (LP) (Stout & Barto, 2010; Matiisen et al., 2017;
Portelas et al., 2020a; Colas et al., 2019) (see Portelas et al. (2020b); Narvekar et al. (2020)
for surveys as well as Appendix H for a non-exhaustive empirical comparison of existing
methods). I further discuss ACL methods, and in particular LP-based approaches, in
Chapter 5, where exploration challenges for functional grounding of LLMs are discussed.

Finally, Colas et al. (2022b) discussed the existing approaches for defining G and R.

For the latter, most current approaches assume access to a pre-defined goal-conditioned
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reward function, but some works have attempted to learn this reward function (e.g.,
(Bahdanau et al., 2019a; Venkattaramanujam et al., 2020; Warde-Farley et al., 2019)).
Recently, multiple works have started to study the use of pre-trained models such as
VLMs to produce general reward functions (e.g., (Fan et al., 2022; Du et al., 2023; Zhang
et al., 2024b; Klissarov et al., 2023; Colas et al., 2023; Zhou et al., 2024c; Sancaktar
et al., 2025; Lee et al., 2025)). Concerning G, a large number of approaches also assume
access to a pre-defined goal space. However, multiple methods learn goal embeddings,
in particular when goals are expressed as images (Pere et al., 2018; Nair et al., 2018;
Pong et al., 2020) or with language (Bahdanau et al., 2019b; Jiang et al., 2019; Hill
et al., 2020a, 2021; Colas et al., 2023). This last series of work is of particular interest to
this manuscript, as they highlight—following the argument of Colas et al. (2022a)—that
language should play a major role in autotelic artificial agents, given the role it plays in
autotelic mechanisms in humans (as discussed in Section 2.1).

2.2.4 Language in RL agents

The use of language within RL agents has been particularly active over the last decade,
as discussed by Luketina et al. (2019). To study this, multiple testbed environments were
proposed (e.g., (Coté et al., 2019; Chevalier-Boisvert et al., 2019; Hausknecht et al., 2020;
Kiittler et al., 2020; Shridhar et al., 2021; Zhong et al., 2021; Ammanabrolu & Riedl,
2021; Wang et al., 2022; Jansen, 2022)). In particular, Text Worlds (Coté et al., 2019)
are environments in which an agent interacts through natural language: observations are
descriptions of the environment’s current state, goals are natural language instructions,
and actions are textual commands. Notably inspired by early adventure video games
such as Zork, Text Worlds are well-suited to study the use of commonsense knowledge
by RL agents. Another type of environment combines multiple modalities such as visual
or symbolic observations and textual instructions (e.g., (Chevalier-Boisvert et al., 2019;
Bahdanau et al., 2019a; Hill et al., 2021)). These environments are particularly suited to
study forms of grounding (e.g., direct), for instance, through embodied question answering
(Das et al., 2018; Gordon et al., 2018; Liu et al., 2023b).

Grounding language through RL

In particular, several works studied language grounding in RL agents. They proposed
using an embodied RL agent that must interact with an environment (through low-level
actions) to solve instructions (i.e., goals specified with language). Hermann et al. (2017)
and Hill et al. (2021) studied how to ground instructions into sequences of actions through
RL in a visual environment. The latter notably examined the acquisition and direct
grounding of new nouns before asking the RL agent to solve tasks involving these nouns
(see Figure 2.9). Das et al. (2018) investigated similar navigation problems in visual
environments but considered questions as instructions and used an answering module
at the end of the trajectory to provide the response. Akakzia et al. (2021) also studied
instruction-following RL agents (this time in a robotics setup), focusing on learning a
mapping from natural language instructions to symbolic representations (i.e., a logical
expression defining how objects must be positioned). They showed that decoupling
language grounding and skill learning—a process observed in infants—leads to improved
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performance. Lair et al. (2019) and Colas et al. (2020) went further by studying both
the generation of instructions (using a restricted grammar and hand-designed rules) and
the learning of an instruction-conditioned reward function. They notably demonstrated
how simple language descriptions can be used to capture and generate complex behaviors.
Finally, Lampinen et al. (2022) studied the use of explanations as an auxiliary objective for
RL agents and how producing such explanations helps the agent capture causal structure.

Discovery phase Instruction phase

/ Randomize Qj

positions

“This is a blicket" O

"Pick up a blicket"

Figure 2.9: Hill et al. (2021) proposed two phases: one where the agent
explores the environment and receives descriptions (Discovery phase) and
another one where it is asked to solve tasks (Instruction phase). The authors
show that their agent quickly learns nouns of new objects and is able to
complete tasks that require interacting with the new objects.

To conclude, the field of RL has extensively studied and proposed methods enabling
agents to solve sequential decision-making tasks through interactions with an environ-
ment. This learning process is grounded in trial-and-error, where the agent explores
the environment and gradually refines its policy. Methods have been designed for both
simple tabular and complex high-dimensional environments, as well as for deterministic
and stochastic policies. Moreover, recent years have seen substantial progress toward
more autonomous RL agents that do not rely on dense rewards but instead leverage
intrinsic motivation signals. These signals range from acquiring new knowledge about the
environment (e.g., improving a forward model) to developing new skills through autotelic
mechanisms. The use of language in RL agents remains relatively understudied but
has gained increasing attention. Language offers a natural way to define the goals that
autonomous agents must pursue and is especially valuable for autotelic agents, who can
leverage the compositional nature of language to continually generate new goals. A recent
line of research has examined RL agents that follow natural language instructions, with
a particular interest in how the learning process facilitates language grounding. They
showed that learning to solve goals via RL is effective not only for grounding nouns to
their referents (i.e., direct grounding) but also for capturing relational concepts (e.g.,
spatial relationships between objects). Luketina et al. (2019) conclude their review by
emphasizing that language is a vector of knowledge and cultural artifacts, which could be
pivotal in moving current RL agents beyond the classic tabula-rasa paradigm in which
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everything must be learned from scratch. They notably identify large pre-trained NLP
models (e.g., LLMs) as promising tools for incorporating such knowledge into RL agents.
Given the evidence discussed in Section 2.1 that sensorimotor experience may be essential
for grounding LLMs—especially for functional grounding—and the evidence presented
in this section on the effectiveness of RL for solving tasks and supporting grounding,
the present research investigates how LLMs could leverage RL for functional grounding
by learning to use language to solve tasks in interactive environments. We argue that
current LLMs’ abilities invite us to study functional grounding in complex environments
featuring a potentially infinite number of goals. In such a context, curiosity-driven RL
has been shown to play a major role in both human and artificial learners.

2.3 LLM agents

The impressive capabilities exhibited by LLMs have inspired researchers to apply
them beyond the traditional scope of NLP. One particularly challenging area is robotics,
where the goal is to build agents that can understand and execute natural language
instructions. The ability of LLMs to process linguistic input and encode commonsense
knowledge has proven especially valuable for robots operating in everyday environments
such as homes. More recently, the integration of LLMs into agents capable of executing
actions has expanded to a broader range of applications, driven in part by LLMs’ capacity
to generate executable code. In this section, I provide a brief overview of how LLMs have
been used in embodied agents. I then examine current approaches that employ RL to
fine-tune LLMs. While much of this work has focused on RL for language generation in
disembodied LLMs, a newer line of research—initiated notably by our GLAM contribution
(see Section 3)—has begun to explore the use of LLMs as RL policies interacting directly
with an environment.

2.3.1 Embodied LLMs

An initial line of research explored the integration of LLMs into embodied agents,
including real-world robots and virtual agents in video games. These efforts primarily
focused on using LLMs for planning, i.e., selecting a sequence of actions to accomplish
a task. Early approaches such as Huang et al. (2022) and Ahn et al. (2022) relied on
sensorless LLMs that generate action plans based solely on a given goal, without access
to observations of the environment. Subsequent work introduced feedback mechanisms
whereby the LLM receives textual observations—either directly from the environment or
through a perception module such as a VLM-—and can invoke itself recursively (Huang
et al., 2023; Zeng et al., 2023; Yao et al., 2022). This recursive planning strategy was
further expanded in recent studies (e.g., (Wang et al., 2023b,a,c)).

In these frameworks, LLMs have been employed either to directly generate complete
action sequences or to propose candidate actions for selection by another module. For
example, Ahn et al. (2022) used an LLM to estimate the probability of success for each
high-level action, which was then combined with a separate estimation of the feasibility
of executing that action using a corresponding low-level policy (see Figure 2.10). The
final action was selected based on the highest combined probability, a strategy designed
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to mitigate the selection of infeasible actions by a "blind" LLM. Similarly, Yao et al.
(2020) leveraged an LLM to filter the action space of an RL policy operating in a textual
environment, conditioning on both the goal and the current observation. These studies
underscore the value of exploiting the commonsense knowledge encoded in LLMs. While
many of these approaches relied on frozen LLMs, others introduced learning components
using BC, either by fine-tuning the LLM itself (Yao et al., 2020; Wang et al., 2022) or by
training additional neural networks on top of it (Li et al., 2022).

Instruction Relevance with LLMs Combined Task Affordances with Value Functions
How would you put R Eindianiappic 0.6
an apple on the -30 Find a coke 0.6 S
table? -30 Find a sponge 0.6
-4 Pick up the apple 0.2

I would: 1.

-30 Pick up the coke 0.2 T

? 5 Place the apple 0.1

30 Place the coke 0.1 Value
LLM -10 Go to the table 0.8 Functions
-20 Go to the counter 0.8

I would: 1. Find an apple, 2. ‘
L s =

Figure 2.10: In SayCan (Ahn et al., 2022), an LLM is used to score a
set of possible actions (i.e., compute the probability of each action’s token
sequence to follow a prompt). Each action is associated with a low-level
RL policy (that was trained beforehand), which will control the robot to
perform the action. However, the LLM has no access to any observation
of the environment and might assign a high score to something that is not
possible. Each action probability computed by the LLM is mixed with the
value of the associated RL policy, which has access to a visual observation of
the environment. The value is considered here as an affordance score: how
likely the action is achievable in the current scene. This mix allows for the
leveraging of commonsense knowledge of LLMs (e.g., for cleaning a table, a
sponge is useful) while selecting actions that are feasible.

Beyond robotics, a recent and rapidly growing body of work investigates the use of
LLM-based agents to control computers. This includes interactions with search engines
(Lazaridou et al., 2022; Yao et al., 2022), calculators (Schick et al., 2023; Kadl¢ik et al.,
2023), web browsers (Yao et al., 2022; Nakano et al., 2022; Zhou et al., 2024a), and user
interfaces more broadly (Xie et al., 2024; Zhang et al., 2025). A core challenge in building
LLM agents for such tasks lies in defining an appropriate textual action space that the
LLM can interact with. In simulated environments, for example, Huang et al. (2022) or
Wang et al. (2022) highlighted the difficulty of mapping free-form LLM outputs to the
discrete actions that the environment supports.

To address this issue, Ahn et al. (2022) proposed an alternative strategy called
"scoring," where the LLM does not freely generate an action but instead computes the
probability of each possible action from a predefined set, given a prompt. This approach
ensures that only valid actions are considered, but it suffers from scalability limitations
since it requires computing probabilities for all candidate actions at each step. A third and
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increasingly popular solution leverages the LLMs’ strong capabilities in code generation
(Du et al., 2024). Code offers a general and expressive medium for controlling software
and hardware systems, and thus a growing number of recent works build LLM agents that
act by generating executable code (Liang et al., 2023; Yang et al., 2023; Liu et al., 2024).

2.3.2 RL applied to LLMs

The rapid development of situated LLM agents naturally raises the question of
whether reinforcement learning has been applied to optimize their behavior. However,
the application of RL to LLMs is not new. In fact, RL was already extensively studied in
the context of natural language generation (NLG), even before the emergence of LLMs,
as a means to learn how to generate words (or tokens) sequentially.

RL for natural language generation

NLG can be framed as a sequential decision-making problem: at each step, a model
selects the next word (or token) based on the prior context and an objective, or functional
meaning. Given this structure, applying RL appears natural and has been extensively
explored for training RNNs in NLG tasks (e.g., (Jaques et al., 2017; Bahdanau et al., 2017;
Ranzato et al., 2016; Paulus et al., 2018; Scialom, 2022)). In particular, early RNN-based
language models trained solely with causal language modeling (CLM) yielded suboptimal
results, and fine-tuning them using RL demonstrated promising improvements (Ranzato
et al., 2016; Scialom, 2022). Although LLMs later showed that scaling CLM to larger
architectures and datasets produces strong NLG capabilities, the generated outputs can
still diverge from human expectations (Ouyang et al., 2022).

Prior to the widespread adoption of LLMs, a line of work focused on using RL to
fine-tune smaller RNN-based models to better align with human preferences (Stiennon
et al., 2020; Ziegler et al., 2020). These approaches relied on human annotators to score or
rank model outputs, from which a reward model was trained. Ouyang et al. (2022) applied
this approach to LLMs with the goal of improving instruction following. They introduced
a now-standard procedure known as RLHF, combining PPO with a Kullback-Leibler
(KL) penalty to prevent excessive divergence from the original language model’s behavior
(Jaques et al., 2017). RLHF has since become a central component in LLM training
pipelines. Several variants have been proposed that modify or challenge this procedure
(Ramamurthy et al., 2023; Gulcehre et al., 2023; Rafailov et al., 2023; Ahmadian et al.,
2024; Singh et al., 2024; Azar et al., 2024). For example, Rafailov et al. (2023) argue
that RLHF does not involve true sequential interaction, as the reward is given only after
generating the full output. They frame the problem instead as a contextual bandit and
propose the RLOO algorithm. Additionally, Ahmadian et al. (2024) contend that learning
a reward model is unnecessary and show that it is possible to directly optimize human
rankings—a perspective further analyzed by Azar et al. (2024).

Beyond alignment, RL has also been explored as a means of enhancing LLMs’ reasoning
abilities. For example, Uesato et al. (2022) and Havrilla et al. (2024) investigated how
RL could improve mathematical problem-solving by LLMs, while DeepSeek-Al et al.
(2025) demonstrated that carefully designed reward functions can guide LLMs to produce
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intermediate reasoning steps before answering. Overall, this use of RL to fine-tune LLMs
marks a shift toward more active learning paradigms. In particular, RLHF can be seen
as a primitive form of social learning, as it optimizes the model to produce responses
aligned with human preferences. While this constitutes a step toward grounding in social
interactions, it remains far removed from the rich, multifaceted social experiences through
which children acquire language.

RL for embodied LLMs

Embodied LLMs are defined by their interaction with an environment—through
sensing and acting. Early works such as Ahn et al. (2022), Huang et al. (2023), and
Yao et al. (2022) demonstrated that LLMs can exploit the knowledge acquired through
large-scale CLM to serve as decision policies in interactive environments. However,
the internal representations developed during CLM training are often misaligned with
the state and dynamics of the target environment. While incorporating environment
observations can help LLMs adapt behaviorally, these adjustments are not persistent,
as they do not modify the model’s internal parameters—hence failing to achieve lasting
grounding. To our knowledge, we introduced the first instance of a situated LLM that
learns through online reinforcement learning to solve tasks within an environment. Our
method, GLAM (see Section 3.2), converts the LLM into a policy by scoring each possible
action—following the SayCan paradigm—and fine-tunes the LLM via PPO. Through on-
policy RL, we demonstrate that the LLM progressively aligns its internal representations
with the environment’s structure, enabling effective control and task-solving. Crucially,
we show that this active learning scheme results in improved grounding compared to
passive imitation via BC.

Following its introduction, GLAM has been extended by several works. Tan et al. (2024)
proposed normalizing action probabilities output by the LLM using action length. In SAC-
GLAM, presented in Section 5.1, we introduced an off-policy alternative to PPO. Wen et al.
(2024a) and Wen et al. (2024b) explored the granularity of RL application—contrasting
token-level and action-level optimization—and found that token-level RL may provide more
precise credit assignment. Similarly, Zhou et al. (2024b) proposed a hybrid architecture
in which the LLM policy operates at the token level, while another LLM is used to
estimate action-level values. Recent work by Aissi et al. (2025) extended GLAM to visual
environments by using a VLM to translate visual input into text for the LLM policy.
Concurrently, Zhai et al. (2025) investigated applying PPO directly to a VLM used as the
agent’s policy, further requiring the model to generate reasoning steps before selecting an
action. Szot et al. (2024) also used RL to fine-tune VLM agents, but chose to train neural
networks added on top of the VLM for the policy and value (and keep the VLM frozen).

In parallel, several studies explored offline RL for LLM-based agents—i.e., leveraging
previously collected data without further interactions with the environment (Levine et al.,
2020). Notable contributions include Snell et al. (2023) and Abdulhai et al. (2023),
with Kumar et al. (2022) showing that offline RL can outperform BC. However, this
dissertation focuses on active learning schemes, where the LLM learns by interacting
with its environment. Offline RL will therefore not be further addressed. Finally, online
RL has recently been extended to LLM agents interacting with digital interfaces. For
instance, Bai et al. (2025) apply Advantage Weighted Regression to train a VLM policy
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on both online and offline smartphone interaction data. In a similar vein, Chen et al.
(2025) proposed a policy gradient approach to train LLMs to interact with APIs through
trial-and-error.

2.3.3 Building autotelic LLM agents

Whether interacting with an external environment or generating text completions,
current LLM agents trained with RL have so far been explored only in constrained
settings, where the space of tasks remains limited—such as a fixed dataset of math
problems or a single navigation environment. However, the remarkable capabilities of
LLMs naturally invite scaling these agents to much larger, more diverse task spaces.
Crucially, tasks for LLM agents are typically defined using text (spanning from natural
language to programming or formal languages), which—thanks to its expressiveness and
compositionality—offers a unified task space. Yet this same expressiveness implies a
practically infinite goal space, posing a key challenge: how can we efficiently train LLM
agents within such a vast space under finite resource constraints?

As discussed in Section 2.2.3, humans are autotelic learners—they self-define, select,
and pursue goals throughout life, despite facing an infinite set of possible goals. Inspired
by this, autotelic RL agents have been designed to explore and learn efficiently in large goal
spaces. A central question in this manuscript is whether these autotelic RL approaches
can be extended to LLM agents operating over natural language-defined tasks. When
presenting autotelic RL agents, we identified multiple key challenges, namely: 1) defining
G, 2) defining R, 3) defining a goal-selection scheme, and 4) learning a policy 7. In the
case of LLM agents, G encompasses all goals defined with text. While this makes G
extremely expressive and flexible, it also renders the goal-selection process essential. Most
existing approaches to automatic curriculum learning rely on random exploration over a
pre-defined goal space—a strategy that does not scale well to natural language due to its
combinatorial explosion.

Recent work has begun to address this. For instance, Zhang et al. (2024b), Klissarov
et al. (2023), and Sancaktar et al. (2025) proposed using LLMs themselves as models
of interestingness—filters that constrain the space of explored goals to those considered
“interesting” by the LLM. This approach aligns well with how humans often explore within
structured cultural or social constraints (e.g., narratives, tools, or games) (Bruner, 1990).
Moreover, it opens new possibilities for defining R, by leveraging LLMs’ ability to recognize
goal success or evaluate outcomes in natural language. However, these approaches typically
rely on frozen LLMs, whose understanding may be limited—especially in open-ended
learning scenarios where both the task space and the agent’s abilities evolve over time.
Addressing this limitation requires a crucial step: enhancing the metacognitive abilities
of LLMs. In humans, metacognition plays a central role in autotelic behavior, allowing
individuals to assess their own competence and strategically select what to learn next.
Similarly, navigating the vast and unbounded goal space available to LLMs demands
mechanisms for evaluating one’s own functional competence and identifying suitable
learning targets. Importantly, augmenting LLMs with such self-evaluation capabilities
has also been recognized as a key ingredient for building safer and more trustworthy
Al systems—models that can detect and communicate when their abilities fall short
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(Johnson, 2022; Steyvers & Peters, 2025; Johnson et al., 2025). The research presented in
Chapter 5 directly tackles this challenge by introducing methods that enable LLMs to
estimate their own functional competence through online interactions.

Finally, this manuscript proposes several approaches for learning the policy, i.e.,
improving the LLM’s functional competence over time. While methods such as GLAM and
its derivatives mostly employed on-policy RL (e.g., PPO), the nature of autotelic learning
introduces inherent sparse reward challenges. Agents may frequently self-select goals
beyond their current competence, making reward signals rare or uninformative. To address
this, existing autotelic RL approaches often rely on off-policy RL and hindsight relabelling
to better utilize collected trajectories. Notably, these methods often assume social learning
contexts, where external cues help reinterpret failed attempts. Colas et al. (2023) explored
how an LLM could be used to automatically relabel failed trajectories, interpreting
what might have been achieved instead of the originally intended goal. However, just as
with reward functions, how to continuously improve LLM-based relabelling mechanisms

remains an open problem—especially in the context of continual and open-ended learning.

To conclude, LLM agents—i.e., language models that can sense and act within an
environment—have seen significant development in recent years. Their applications now
span a broad spectrum, from robotics to search engines and web browsing. However,
early work primarily focused on frozen LLMs, whose internal representations often remain
misaligned with the external environments they interact with. The use of RL with
language models has a well-established history, particularly for improving NLG. This
includes leveraging RL to align LLM outputs with human preferences or to enhance
reasoning capabilities. With respect to LLM agents, the present research introduced the
first method to align their internal representations with the external environment using
online RL. However, despite the ongoing active research in this direction, much remains
to be done to scale RL-based approaches to LLM agents that face a possibly infinite
number of tasks.
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In this chapter, we investigate the use of RL and online interactions with an environ-
ment for the functional grounding of LLMs (see Figure 3.1). We begin by introducing the
concept of functional grounding, the grounding of functional competence, and examining
its relationship to the broader symbol grounding problem (Section 3.1). We then present
the first method for achieving functional grounding of LLMs through online RL: GLAM
(Section 3.2). GLAM is the first study to explore embodied LLMs that update both their
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strategy and internal representations through online interactions with an environment
and RL. Using an interactive textual environment designed to study functional grounding,
along with a series of spatial and navigation tasks, we evaluate: (1) GLAM’s ability
to update the LLM and discover optimal goal-solving strategies, (2) the generalization
capabilities of the functionally grounded LLM, and (3) the benefits of active learning via
RL compared to BC.

Following this, Section 3.3 analyzes _
Action

the impact of functional grounding on ( 3
LLMs. We propose an experimental — o A
: - Textual
protocol‘ to e.valuate‘the internal rep- aspa;g?ii?/ts ‘
resentations in functionally grounded e J
AN

LLMs. Our approach specifically in-
. . . Observation + Reward

vestigates what information LLMs ex-

tract from environmental observations Figure 3.1: In this chapter, we study the functional

when solving tasks (i.e., their func- grounding of LLMs by using them as an RL agent’s

tional competence), and how func- policy that interacts with textual environments.
tional grounding affects their broader
understanding of environmental dynamics. To this end, we conduct a large-scale study
spanning multiple LLM architectures, environments, and prompt formulations. Our
findings reveal that LLM performance declines significantly when presented with prompt
formulations that differ from those seen during training. However, we show that increasing
prompt diversity—particularly through contrastive learning—enhances the robustness
of functionally grounded LLMs. This results in more consistent information-seeking

behaviors and improved comprehension of the environment.

Collaborations and scientific output — This chapter stems from a collaborative
project initiated in October 2022 by Thomas Carta and myself. At the time, I was exploring
embodied LLM agents, while Thomas was focused on RL in textual environments. Our
shared interest in fine-tuning LLM agents with online RL led to a joint project, to which we

contributed equally—from conceptualization to experimental execution and paper writing.

On the experimental side, Thomas primarily developed the BabyAI-Text environment,

while I implemented the distributed training setup for fine-tuning LLMs with online RL.

This collaboration also included all our respective PhD advisors, who were actively involved
in shaping the research direction and co-authoring the paper. The resulting work was
published in 2023 as a conference paper (detailed in Section 3.2): Thomas Carta, Clément
Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer. 2023.
Grounding large language models in interactive environments with online reinforcement
learning. In Proceedings of the 40th International Conference on Machine Learning
(ICML), Vol. 202., Article 150, 3676-3713. Following this publication, we identified
several promising follow-up directions. One such direction focused on investigating how
online RL-based fine-tuning affects the internal knowledge and representations of LLMs.
This became the first PhD project of Salim Aissi, who had recently begun his PhD
under the supervision of Olivier Sigaud (in 2023). I actively contributed to defining
the research direction, designing experiments, and setting up the training infrastructure
(including re-running GLAM on BabyAl-Text and additional environments). I also
participated in the writing of a paper published in 2024 as a conference paper: Mohamed
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Salim Aissi, Clément Romac, Thomas Carta, Sylvain Lamprier, Pierre-Yves Oudeyer,
Olivier Sigaud, Laure Soulier, and Nicolas Thome. 2025. Reinforcement Learning for
Aligning Large Language Models Agents with Interactive Environments: Quantifying
and Mitigating Prompt Querfitting. In Findings of the Association for Computational
Linguistics: NAACL 2025, pages 7030-7046. Section 3.3 presents a modified version of
that paper, which I restructured and rewrote to align with the narrative of this thesis.

3.1 Functional grounding: external dynamics and goals

As discussed in Chapter 2, the symbol grounding problem, originally formulated by
Harnad (1990), concerns how to connect the internal symbols processed by a system to
the external world. Grounding is considered essential for symbols to acquire meaning. In
the literature, language grounding has referred to a range of related objectives (Thill et al.,
2014). For example, one well-studied goal is the association of "elementary" symbols—such
as the names of objects—with invariant patterns in high-dimensional perceptual modalities
like vision (Cangelosi et al., 2010). This type of grounding, known as direct grounding,
has been the focus of extensive research and has led to a variety of successful approaches,
ranging from VLMs (Cho et al., 2021; Tsimpoukelli et al., 2021; Alayrac et al., 2022;
Laurencon et al., 2023; Chen et al., 2023) to robotic systems (Cangelosi & Stramandinoli,
2018). A complementary research direction involves grounding abstract concepts in terms
of more elementary ones—what Cangelosi & Stramandinoli (2018) refer to as grounding
transfer. This process addresses how symbolic meaning can propagate through internal
symbolic relations. Distributional semantics has been particularly influential in this
context, demonstrating that statistical co-occurrence patterns can capture conceptual
relationships in language (Turney & Pantel, 2010; Boleda, 2020).

Such connections between words and environmental properties correspond to what Roy
(2005b) terms referential meaning. However, Roy (2005b) also highlights a complementary
dimension of meaning: functional meaning. While language serves to describe and refer to
experiences, it is also used as a tool to act upon and control the environment in order to
achieve goals. We argue that developing functional competence—as defined by Mahowald
et al. (2024)—in computational models requires addressing a distinct form of grounding.
In particular, a central challenge of grounding functional competence lies in understanding
how internal symbol manipulations can effectively model, predict, and control external
physical or social processes. For such competence to emerge, these internal processes
must be aligned with and constrained by the dynamics of the external world. We refer to
this alignment as functional grounding.

A key characteristic of functional grounding is that it inherently involves sequential
decision-making—using language appropriately to achieve specific goals. As discussed
in Chapter 2, multiple approaches exist for learning such decision-making strategies. In
particular, we emphasized the power of active learning through interaction with the
environment, as opposed to passive imitation learning. Unlike direct grounding or ground-
ing transfer—which can often rely on static, pre-collected data—functional grounding
demands exploration. It requires the agent to actively engage with its environment and
update its internal representations based on the outcomes of its actions. This makes inter-
active learning mechanisms, such as RL, particularly well-suited for achieving functional
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grounding.

3.2 GLAM: Functional grounding of LLMs in interactive
environments with online RL

We begin our empirical contributions to functional grounding through online RL with
the introduction of the Grounded LAnguage Model method, or GLAM. We consider
interactive textual worlds Coté et al. (2019); Jansen (2022), which are precisely designed to
focus on higher-level forms of grounding, such as functional grounding. In textual worlds,
environments can encode rich forms of physical structures inspired by the ones in the
human world, e.g. Wang et al. (2022), yet agents act and perceive in these environments
only through the textual modality. In this context, this contribution aims to make
progress towards the following open question for functional grounding: how could LLMs
be used as agent policies producing actions towards goals in interactive environments,
perceiving the outcome of these actions, and incrementally grounding and updating their
knowledge with the new observations they collect?

Building on works successfully using RL to fine-tune LLMs for natural language
generation tasks (e.g., (Stiennon et al., 2020; Ouyang et al., 2022; Ramamurthy et al.,
2023)), we propose the first study about functional grounding of LLMs through incremental
online RL. In particular, we aim at empirically answering the following open scientific
questions:

e Q1. Sample efficiency How fast can an LLM adapt and learn to solve various
spatial and navigation problems specified in natural language? How does the use of
pre-trained knowledge from LLM boosts sample efficiency?

e Q2. Generalization to new objects: Once functionally grounded, how can an
LLM generalize to various kinds of changes about objects, yet staying in trained tasks?

¢ Q3. Generalization to new tasks: How can such an interactively trained LLM
perform zero-shot generalization to new tasks? How does generalization depend on the
kind of new tasks?

e Q4. Impact of online interventions: What is the empirical impact of grounding
using online RL with incremental interactions in comparison with offline BC from a
dataset of expert trajectories?

To answer these scientific questions, Section 3.2.3 studies GLAM, our method for
functional grounding of LLMs (see Figure 3.2 and Section 3.2.2) on BabyAI-Text, a
textual version of the BabyAl environment (Chevalier-Boisvert et al., 2019). Additionally,
we help the RL community further develop grounding techniques for LLMs in interactive
environments by releasing, in addition to the code of this work!, a Python library named
Lamorel? facilitating the use of LLMs at scale for RL practitioners. While many tools
exist for LLMs and NLP tasks, moving to an RL setting with interactive environments

https://github.com/flowersteam/Grounding_LLMs_with_online_RL
Zhttps://github.com/flowersteam/lamorel
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requires adaptations, making previous tools not well suited for RL practitioners (see
Section 3.2.2).
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Figure 3.2: The GLAM method: we use an LLM as agent policy
in an interactive textual RL environment (BabyAI-Text) where
the LLM is trained to achieve language goals using online RL
(PPO), enabling functional grounding. (a) BabyAI-Text provides a
goal description for the current episode as well as a description of the agent
observation and a scalar reward for the current step. (b) At each step, we
gather the goal description and the observation in a prompt sent to our LLM.
(c) For each possible action, we use the encoder to generate a representation
of the prompt and compute the conditional probability of tokens composing
the action given the prompt. Once the probability of each action is estimated,
we compute a softmax function over these probabilities and sample an action
according to this distribution. That is, the LLM is our agent policy. (d)
We use the reward returned by the environment to fine-tune the LLM using
PPO. For this, we estimate the value of the current observation by adding
a value head on top of our LLM. Finally, we backpropagate the gradient
through the LLM (and its value head).

3.2.1 Related work

Language-conditioned RL — We position this work in the language-conditioned
RL setting, where an instruction-following agent learns a policy that executes actions
in an interactive environment in order to fulfill a language instruction (Luketina et al.,
2019). While several works studied this setting for various tasks in 2D or 3D environments
(Hermann et al., 2017; Bahdanau et al., 2019a; Colas et al., 2020; Chevalier-Boisvert et al.,
2019), we here focus on text-only interactions (i.e. performing textual commands given
textual observations), as in Shridhar et al. (2021). However, our work studies how LLMs
can not only encode this instruction (Hill et al., 2020b) but also be directly used as agent
policies choosing actions given the observation.

Textual environments for RL — Many text-only environments have been used and
developed, as discussed in Chapter 2. They usually implement high-level text commands
along with very large action spaces and complex dynamics between entities, often aiming
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to study functional grounding of policies dealing with high-level actions. While these
environments offer interesting properties, we chose to introduce a new environment
specifically designed for the systematic analysis of functional grounding. We focused
on lower-level navigation skills in spatial environments (which lacks in most textual
environments as the agent can usually change rooms, and has direct access to all objects
in a room). Moreover, several ablation studies shown in Appendix A.2.6 required precise
control over the procedural generation (usually not offered by textual environments).
For these reasons, we adapted the BabyAl platform (Chevalier-Boisvert et al., 2019)
into a procedural text-only version that enables decoupling exploration challenges from
perception challenges. Additionally, we are still able to use BabyAl’s visualization tools
to analyze trajectories (see Figure 3.2).

Foundation models for decision making — Among the line of work using foundation
models (in particular LLMs) for decision-making in embodied agents, SayCan (Ahn et al.,
2022), Code as Policies (Liang et al., 2023), and Inner Monologue (Huang et al., 2023)
used LLMs as high-level planners in robotics setups. Because their LLM is not directly
used as an agent policy for low-level actions and is not grounded using its interactions
with the environment, Ahn et al. (2022) had to use an external affordance function to
re-rank the actions proposed by the LLM. Similarly, Yao et al. (2022) also featured a
closed-loop feedback between an LLM that is the planner and an agent that is the actor,
but this time in a textual environment. Expanding on this, Dasgupta et al. (2022) added
a reporter observing the environment and reporting useful information to the planner.
While hinting at the usefulness of prior knowledge contained in LLMs for embodied tasks,
these works are limited by the absence of grounding. Second, several works proposed to
first fine-tune LLMs on expert trajectories before using them in the environment. Using
their ScienceWorld benchmark, Wang et al. (2022) showed that LLMs fine-tuned using
BC performed worse than a much smaller and randomly initialized Deep Q-Network
trained using RL supporting the hypothesis that grounding in the environment through
direct interactions is crucial. Reid et al. (2022) reused LLMs to perform offline RL in
non-linguistic environments leveraging the internal structures learned by LLMs but no
longer using words or symbols they were trained to manipulate (Takagi (2022) investigated
how these internal structures can be relevant for unrelated tasks). Finally, one may also
pre-train a policy using BC or offline RL from expert trajectories before fine-tuning it with
interactions with an environment. Related to our work, the Online Decision Transformer
(Zheng et al., 2022) first uses offline RL to pre-train a transformer model and eventually
fine-tunes it with online RL. But compared to our study, they did not use a general
CLM pre-training objective and therefore did not study functional grounding of language
symbols.

Fine-tuning LLMs with RL — RL applied to LLMs was used in particular to
improve alignment between generated text and human preferences (Stiennon et al., 2020;
Ouyang et al., 2022). In RLHF, text generation is viewed as a sequential decision-making
problem where each "action" of the LLM is a new token and the "state" corresponds to
the prompt. Most of these methods used PPO (Schulman et al., 2017) to fine-tune their
LLMs using a reward function learned on a dataset of collected human interactions. With
this technique, Ouyang et al. (2022) managed to generate more human-aligned outputs
despite having a model (InstructGPT) with 100 times fewer parameters than GPT-3
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(Brown et al., 2020). While our work shares the PPO-based fine-tuning with RLHF, our
setup diverges from it in multiple aspects. First, our LLM is functionally grounded using
an external task-conditioned reward from the environment (which happens to be sparse
in our BabyAI-Text environment) and not a learned reward model. Second, the RLHF
setup has no external environment dynamics controlling the next state given a previous
state and an action (the next state in RLHF is just the previous state with the last
generated token appended). In comparison, our work exposes an outer loop controlled
by the environment whose dynamics, providing the next state and reward, are unknown
to the LLM (in comparison to RLHF where the RL loop is an inner loop in the token
generation process).

3.2.2 Grounding LLMs with online RL (GLAM)

We introduce the GLAM method (for Grounded LAnguage Models) where an LLM is
used as agent policy and is functionally grounded in an interactive environment using
online RL by leveraging collected observations and rewards to improve itself towards
achieving goals formulated in language. We detail this method in the following paragraphs
and redirect the reader to Figure 3.2 for a schematic view. We first formalize the textual
RL problem we tackle (a). Then, we detail how we use an LLM as agent policy to interact
with BabyAlI-Text (b, c¢). Finally, we explain how online RL fine-tuning is used to ground
the LLM in BabyAI-Text (d).

Problem statement

We assume a textual RL setting where, given a language vocabulary V, our environment
returns an observation o € V¥ and a reward r € R following an action a € A C V¥ (i.e.
actions are sequences of tokens). We also assume a task or goal description g € G C V¥
which conditions the reward. Such an environment can be framed as a goal-augmented
Partially Observable Markov Decision Process M = (S, V, A, T,R,G,0,v) with S the
state space, A C V¥V the action space, G C V¥ the goal space, T : S x A +— S the transi-
tion function, R : S X A x G + R the goal-conditioned reward function, @ : S — VYV the
observation function mapping a state to a textual description and finally ~ the discount
factor.

In this work, we extend the BabyAl platform (Chevalier-Boisvert et al., 2019) initially
designed for grounded language learning and propose a text-only extension named BabyAl-
Text. We leverage BabyAl’s inner procedurally generated minigrid environment where
an agent navigates and interacts with objects through 6 text commands: turn left, turn
right, go forward, pick up, drop and toggle. We also reuse the set of tasks introduced
in BabyAlI as well as their associated description along with the sparse scalar reward.
Our key difference is the textual description o € VY of the agent’s partial observation
returned by BabyAl-Text instead of the symbolic representation initially returned by
BabyAT (see Appendix A.1.2). We leverage BabyAI-Text in Section 3.2.3 to assess our
functional grounding method.
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LLMs as policies in interactive environments

In order to use the LLM as the policy in such a textual interactive environment, we
gather the task description, the textual description of the current observation and the
set of possible actions in a prompt used to feed the LLM. We chose a single arbitrary
and simple prompt template (see Appendix A.3 for examples) and did not perform any
intensive prompt engineering. Indeed, as we fine-tune the LLM, we expect it to adapt
to the chosen prompt template. However, we will show in the next contribution, in
Section 3.3, that our fine-tuning not only leads the LLM to adapt to the prompt template
but also to overfit to it.

Given this prompt, we now need the LLM to output a probability distribution over the
possible actions P(.A). For this, Huang et al. (2022); Li et al. (2022); Wang et al. (2022)
used the LLM to generate text. If the generated sequence of characters corresponds to
one of the possible actions (i.e. s € A), this action is chosen by the agent. Otherwise, an
ad-hoc mapping must be performed to select an action a; € A given s. As an alternative
method, one could also use more standard RL practices by adding action heads - a Multi-
Layer Perceptron (MLP) with |.A| outputs - on top of the LLM. Finally, Ahn et al. (2022)
proposed to directly use the LLM to compute the (log) probability of each action a; € A
by computing the conditional probability of each token in action a; = {wo, ..., w4, } given
the prompt p:

la;]

Prom(ailp) = H Proa(w;|p, we;) (3.1)
j=0

with Pppa(wj|p, w<;) the probability computed by the LLM of token w; given prompt
p and previous tokens w.; (see (c) from Figure 3.2). This method suffers from requiring
a forward pass on the LLM for each action to compute the probability of its sequence
of tokens (especially in comparison to new action heads that require a single forward
pass on the prompt to compute all actions’ probability). However, it also has several
advantages, in particular, 1) there is no need of potential ad-hoc mapping as when text is
generated, 2) we use only pre-trained operations from the LLM and leverage language
modeling heads’ prior and 3) this method is robust to any action space and can thus be
used on any textual environment with no change.

For these reasons, we chose the latter method. We first use log probabilities instead of
normalized probabilities using LP 1/ (a;|p) = leazl) log Py (w,|p, w<;) in replacement
of Prrar(ai|p) to avoid multiple normalization operations. We eventually normalize all
the log probabilities to obtain a distribution over A:

eLPLLZ\/I (ailp)

P(ai|p) = Ea-eA eLPrrnm(a;lp)”

(3.2)

PPO fine-tuning

We now propose to leverage experiences gathered by the LLM to perform functional
grounding. More formally, we aim to learn a policy 7 : O x G — P(A) that maximizes the
expected discounted sum of rewards for any given goal g € G. We use for this the PPO
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algorithm (Schulman et al., 2017) that both learns a policy 7 : O x G — P(A) and a value
function V : O x G — R approximating the true value V(s,9) = Eanr(os).9) [R(S,9,0) +
YW (T (s,a),9)].

As mentioned in Section 3.2.2, we compute the probability of each action a; € A using
the likelihood computed by the LLM as 7 (a;|o, g) = P(a;|p).

For value approximation, we we add an MLP with a single output for the value on top
of the last layer of the first Decoder block (i.e. in place of the language modeling heads)
in order to compute V (o|g) = V(p) (see (d) from Figure 3.2). This position is explained
by the fact that we use Encoder-Decoder LLMs in our experiments but our method could
easily be used with Decoder-only models (as performed in further contributions of this
chapter) by attaching the value head to the Decoder block encoding the last token of the
prompt.

Distributed LLM policies using Lamorel

Using LLMs to compute probabilities over action space is computationally expensive
as it requires computing H‘ja:g

one uses very large LLMs (i.e. more than hundreds of million parameters), computing

Prom(w;|p, we;) for each action a; = {wo, ..., w4, }. When

the probability of a single action already means performing a long forward pass over the
whole network. As a result, computing the probability of each possible action at every
step becomes very slow. Considering the number of interactions usually required to solve
tasks in BabyAlI (and by extension BabyAI-Text), performing online RL fine-tuning of
LLMs easily became intractable with a single LLM distributed over multiple GPUs. To
overcome this, we deployed N LLM workers each handling a subset of actions to score
in parallel (allowing a quasi-linear time decrease with N). We add to this distributed
inference the possibility to also perform distributed training (i.e. compute the gradient of
minibatches in parallel and gather gradients before updating models). We wrap all this
in a Python library named Lamorel designed for RL practitioners eager to use LLMs. It
allows one to use LLMs as black-box but also to perform more advanced methods such as
adding new heads on top of them. See Appendix A.5 for more details.

3.2.3 Experiments

We design a set of experiments in BabyAlI-Text aiming to provide answers for the
scientific questions previously introduced:

e Q1. Sample efficiency How fast can an LLM adapt and learn to solve various
spatial and navigation problems specified in natural language? How does the use of
pre-trained knowledge from LLM boosts sample efficiency?

¢ Q2. Generalization to new objects: Once functionally grounded, how can an
LLM generalize to various kinds of changes about objects, yet staying in trained tasks?

e Q3. Generalization to new tasks: How can such an interactively trained LLM
perform zero-shot generalization to new tasks? How does generalization depend on the
kind of new tasks?
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e Q4. Impact of online interventions: What is the empirical impact of grounding
using online RL with incremental interactions in comparison with offline BC from a
dataset of expert trajectories?

In these experiments, we use Flan-T5 780M (Rae et al., 2022) for 1) the close link
between its training corpus (containing instruction-following documents) and our language-
conditioned interactive environment, and 2) its simple open-source access through the
Hugging Face tools®. We apply our GLAM method to Flan-T5 (which we name GFlan-T5
in experiments below for Grounded Flan-T5) and compare it with three baselines. First,
we also train a non-pre-trained Flan-T5H where we only reuse the pre-trained embedding
layer and add action heads on top of it (see Figure A.6 in appendices). As for GFlan-T5,
we propagate the gradient through the entire graph (including the action heads here).
We call this baseline NPAE-Flan-T5 (Non-pre-trained with Action heads and Embedding
Flan-T5). We show in Appendix A.2.4 that using a non-pre-trained Flan-T5 while keeping
the scoring method fails. We also provide as a more classic RL baseline a DRRN (He
et al., 2016) agent of approximately 1M parameters which is often used for TextWorlds.
We especially reuse the implementation from Wang et al. (2022), which gave SOTA results
and outperformed LLMs. At each step, we feed our 3 agents above with the following
prompt template filled using the information returned by BabyAI-Text (see Appendix A.3
for examples):

e A header listing what actions are accessible (but not necessarily useful) in the
environment in the form of: Possible action of the agent: <list of actions>

e The goal of the agent: Goal of the agent: <goal>

e The 3 previous observations and last 2 actions, used as a short-term memory required
to complete BabyAI-Text tasks (in comparison, the DRRN uses recurrent layers to deal
with short-term memory requirements):

Obs. 0: <description from BabyAlI-Text at step t — 2 >
Action 0:<action chosen by the agent at step t — 2 >
Obs. 1: <description from BabyAlI-Text at step t — 1 >
Action 1: <action chosen by the agent at step t — 1 >
Obs. 2: <description from BabyAlI-Text at step t >
Action 2: <the next action to be chosen by the agent>

Finally, as BabyAl-Text simply provides an alternative mapping of observations, we
add as an indication the performance of the PPO agent used in (Chevalier-Boisvert et al.,
2019) that runs on BabyAlI rather than BabyAI-Text (i.e., using symbolic observations
instead of textual descriptions) and name this agent Symbolic-PPO in results below. In
Appendix A.2.3, we show that symbolic observations provided by BabyAl encode biases
that ease learning compared to textual descriptions. However, even with this advantage,
GFlan-T5 outperforms Symbolic-PPO in all our setups.

We first study Q1 by training the different agents in a multi-task setting assessing
their efficiency at learning the different tasks. We then address questions Q2, Q3 and
Q4 using a set of generalization experiments (Figure 3.5) on the zero-shot abilities of the

3https://huggingface.co/docs/transformers/model_doc/flan-t5
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resulted trained agents mostly inspired from (Colas et al., 2020) and (Valmeekam et al.,
2022). We report their average success rate as well as standard deviation. We compare
the results of GFlan-T5, DRRN as well as Flan-T5 (i.e. the LLM used in GFlan-T5 but
before our fine-tuning) to show how our grounding method impacted it. All results below

are given with their 99% confidence interval (mathematical details are given in Appendix
AT).

3.2.4 How fast can an LLM adapt and learn to solve tasks? (Q1)

In order to study question Q1, we train our agents for 1.5 million steps in BabyAl-Text
where each episode is a task randomly sampled from the following:

e Go to <object>, a simple navigation task that requires reasoning abilities to
choose the right plan given objects’ position;

e Pick up <object>, a reasoning task that combines navigation tasks;

e Put <object A> next to <object B>, which requires first reaching <object
A> picking it up, reaching <object B> and finally dropping <object A> next to
<object B>;

e Pick up <object A> then go to <object B> and Go to <object B>
after pick up <object A>, both serving to test reasoning abilities on temporal
sequences;

e Unlock <door>, a task that includes inferring that a key is needed to unlock the
door, finding the right key (i.e. the one colored as the door) and eventually using
the toggle action with the key on the door.

In each task, the agent must navigate in one procedurally generated room with 8 distractors
(i.e. useless objects for the completion of the task).

We plot the mean and standard deviation of the success rate (i.e. 1 if the goal
has been reached, 0 otherwise) over 4 seeds of GFlan-T5, NPAE-Flan-T5, DRRN and
Symbolic-PPO in Figure 3.3. In addition, we also monitor the evolution of the probability
of each possible action on a set of 11 evaluation prompts to assess agents’ abilities to
solve each task in Appendix A.3. By plotting the evolution of the distribution over
possible actions in Figure A.14, we better grasp how and when the agents learn skills (e.g.
navigation skills).

Looking at the evolution of the average success rate, GFlan-T5 quickly reaches 0.8
after only 250.000 steps (and 0.9 after approximately 600.000 steps). In comparison,
both DRRN and NPAE-Flan-T5 are still under 0.2 after 1.5 million steps. Even when
compared to Symbolic-PPO, which uses symbolic observations (easier to process than
language as shown in Appendix A.3), GFlan-T5 exhibits a drastically better sample
efficiency with Symbolic-PPO almost reaching 0.4 after 1.5 million steps. Figure A.14
and Table A.1 highlight how GFlan-T5 leverages its knowledge about the relationships
between entities to learn navigation tasks in less than a hundred updates.
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Figure 3.3: Q1. Sample efficiency: Evolution over 4 seeds of the average
success rate and standard deviation on all Q1 tasks. The details of average
success rate calculation over the goals is given in Appendix A.2.2.

The failure of NPAE-Flan-T5 both highlights how GFlan-T5 leverages the LLM’s
pre-trained knowledge to deal with the proposed tasks and how the fine-tuning method
helps achieve the grounding objective. Furthermore, the fact that GFlan-T5 strongly
outperforms Symbolic-PPO and the latter is better than NPAE demonstrates how language
can be used as a tool to scaffold learning if already acquired. It also explains how
counterproductive it can be if one asks an agent to both learn a task and language at the
same time (see Appendix A.2.3 for further results).

We now perform a deeper analysis of this sample efficiency by studying the impact of
varying the action space and the number of distractors. We provide both the evolution of
success rate and a sample efficiency measure SFE:

T
SE = = > SR, (3.3)
T t=0

where T is the number of steps or frames seen and SR the success rate at frame ¢.

Impact of the dimension of the action space

In this experiment, we test the sensitivity of LLMs to the size of the action space by
using 3 different action spaces when trained on the Go to <object> task:

e The restricted action space composed of the only 3 useful actions: turn left,
turn right, go forward.

e The canonical action space composed of the 6 actions that can be performed in
the environment with 3 useful and 3 useless actions that are pick up, drop and,
toggle (they are useless here as the agent is only navigating).
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Figure 3.4: Impact of the action space size and number of distractors on the
sample efficiency measure (Equation (3.3)). We report results averaged over
2 seeds for training on the Go To task.

e The augmented action space composed of 9 actions (3 useful and 6 useless with
pick up, drop, toggle, sleep, do nothing and think). The last three actions
have been chosen such that they clearly have no use for the Go To <object> task
and consequently should not impact an agent that has knowledge about the world.

We conduct our tests in an environment with 1 room, 8 distractors, and report results
in Figure 3.4a. Results show no impact on GFlan-T5, while the performance of other
agents decreases with larger action spaces. We hypothesize that this is due to the LLM’s
ability to discard useless actions quickly at the beginning of fine-tuning.

Impact of the number of distractors

Similarly, we expect LLMs to be less sensitive to variations in task complexity. We
assess this by plotting the evolution of sample efficiency (Equation (3.3)) for 4, 8 and 16
distractors. We conduct these tests in an environment with 1 room and observe a slight
performance loss from GFlan-T5 when the number of distractors increases (Figure 3.4b).
In comparison, Symbolic-PPO degrades as the number of distractors increases with a
success rate decreasing by 38% from 4 to 16 distractors whereas the GFlan-T5 success
rate only decreases by 14%. We hypothesize that the LLM manages to focus on the
relevant aspect of the environment quickly.

Thus, GFlan-T5 seems robust with similar learning curves when one increases the
action space size (from 3 to 9 actions with only 3 useful ones) or the number of distractors
(from 4 to 16) We also provide in Appendix A.2.5 an additional ablation analyzing the
impact of the LLM’s size. Results highlight that the number of parameters has a high
impact on the learning process. Indeed, we observe a strong difference on sample efficiency
and asymptotic performance between a small LLM (80 million parameters) and the 780
million parameters we used here. We also plot the full learning curves for the ablation
on the action space size and the number of distractors in appendices A.2.6 and A.2.6,

respectively.
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Figure 3.5: Generalization tests: We train all agents on a mix of 5 different
tasks and evaluate their generalization abilities on 1000 test episodes (also
containing a mix of these 5 tasks) (a). We compare them to two baselines:
an agent choosing actions randomly (Random) and the zero-shot Flan-T5
(without any fine-tuning). We then perform several generalization studies
to answer Q2 and Q3 by (b) substituting object names out-of-vocabulary
names, (c) substituting objects and colors by invented words, (d) testing
a new composition of tasks, (e) substituting actions by synonyms and (f)
translating the whole environment to French for the Go To task. For each
agent, we plot its mean success rate over 2 seeds along with the confidence
interval and the delta with performance on the same task without any change
(except for (d), on which no baseline result can be provided as this task is
completely new). The details of average success rate calculation over the
goals is given in Appendix A.2.2.

3.2.5 Q2. Generalization to new objects

In this section, we analyze how a functionally grounded agent can generalize its skills
to new objects. Indeed, we expect our agents to focus on the geometry of the environment
(how objects are positioned and how their positioning is described), but not on the identity
of the objects themselves (e.g. Go to <object> should be achieved even if the object has
not been seen during training). We test if this property is present in our trained agents
by measuring their zero-shot performance in two environments. First, an environment
with nouns not in the training vocabulary (e.g. "tree")? and second, an environment
with invented objects (made of an invented adjectives and an invented nouns such as faze
daz).” We use the environment the agent has been fine-tuned on (i.e. without any word
substitutions) as a control environment. Results in Figure 3.5 (Q2 part) indicate that
GFlan-T5 is not affected when tasks contain out-of-vocabulary nouns. Moreover, even if
the GFlan-T5’s success rate decreases by 13% when it is in an environment with invented

4The out-of-vocabulary nouns are given in Appendix A.8.1.
®The invented objects are given in Appendix A.8.2.
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objects, it still retains strong performances compared to baselines. These results support
the hypothesis that GFlan-T5 has functionally grounded the symbols that describe the
geometry of the environment and the instructions (e.g. words such as "in front", or the
meaning of "steps" as a distance measure)®.

3.2.6 Q3. Generalization to new tasks
In this Section, we perform generalization tests as in Section 3.2.5, but with new

unseen tasks. Using these, we verify to what extent an agent is able to compose and
generalize over the symbols it has grounded during fine-tuning.

Table 3.1: Generalization tests for behavioral cloning

Environments GFlan-T5 BC-GFlan-T5 BC-Bot Random
Q4 Go To task n(? ch.ange 0.82 +£0.02 0.69 + 0.08 0.73 £0.07 0.30 4+ 0.05
Go To task with invented words | 0.74 £0.004 0.7 +0.07 0.63 £0.08

New composition of learned tasks

During fine-tuning, agents learn to do both 1) Pick up <object A> and 2) Pick up
<object A> then go to <object B> or Go to <object B> after pick up <object A> tasks.
We test in this experiment if an agent can compose grounded symbols to solve the new
tasks Pick up <object A> <then/after> pick up <object B>. Results in Figure 3.5 (Q3
part) hint that, while all agents fail to solve these new tasks, GFlan-T5 outperforms
other baselines by reaching an 0.12 success rate compared to Flan-T5 (0.07) or Random
(0.05). These low results can be explained by the fact that none of the agents managed to
master the Pick up <object A> then go to <object B> or Go to <object B> after pick up
<object A> tasks during training (see Appendix A.3). More details about the grounding
of "then" and "after" are given in the Appendix A.4.4.

Seen tasks with synonym actions

In this task, we test the robustness of our agents to actions by replacing the actions
used during training by synonyms. For instance, "go forward" is replaced with "move
ahead"”. We expect LLMs, which already learned to map words to an embedding space,
to also ground synonyms as they ground words of the environment. In this environment
(see Figure 3.5 Q3 part), the success rate of GFlan-T5 is 0.12 vs 0.01 for Flan-T5. Thus
the grounding of some words (here the actions) also improves the grounding of their
synonyms. However, we observe an 87% drop in performance compared to the original
settings, which we assume is due to an over-fitting of the actions’ vocabulary.

6See Appendix A.1.2 for more details on the geometry.
A table giving all the used synonyms is given in Appendix A.8.3
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New language

In order to understand how far agents can generalize, we test them with a language
not seen during training (French). Knowing that Flan-T5 has been pre-trained with a
multilingual corpus and is able to translate simple sentences, we test whether grounding
in GFlan-T5 has also impacted its manipulation of other languages. However, we observe
that even only for a simple navigation task (i.e. Go To), the model fails to generalize to
a new language with a success rate (0.02) worse than random (0.30). We hypothesize
that when too many grounded symbols are modified at once, functional grounding fails
to be transferred to this new subsystem of symbols. Complementary experiments that
confirm and reinforce this result are presented in appendices A.4.2 and A.4.3.

3.2.7 What is the impact of using RL vs BC for grounding? (Q4)

Finally, we study how online interactions with an environment, enabling learning

through interventions and trial-and-error, improves grounding in comparison to pure BC.

We compare a GFlan-T5 trained on the Go To task over 400000 steps with two baselines
trained with behavioral cloning using 400000 transitions (see Appendix A.6.2). For the
baseline called BC-GFlan-T5, transitions are collected from GFlan-T5 fine-tuned on the
Go To task. For BC-Bot, transitions are collected using the BabyAlI procedural bot
achieving a success rate of 1.

In Table 3.1, we measure the success rate of GFlan-T5 and the baselines on two tasks:
Go To and Go To with invented nouns and adjectives. First, once can see that GFlan-T5
outperforms all baselines in both tasks. Second, as GFlan-T5 does not achieve a success
rate of 1 on the Go To task, its collected trajectories for BC can contain deceptive
transitions in comparison to the ones collected by the bot. Hence, we obtain the expected
result that BC-Bot outperforms BC-GFlan-T5. Finally, we expect our agents not to be
affected by an environment where nouns and adjectives are replaced by invented ones in
such navigation tasks. Experiments show that GFlan-T5 is less affected (0.82 — 0.74)
than the BC-Bot (0.73 — 0.63). GFlan-T5 also performs better in the invented words
task than the BC-GFlan-T5 (success rate of 0.7). These results align with the limits
of passive learning discussed in Chapter 2. Moreover, they also align with theoretical
and empirical evidence discussed throughout this manuscript about the importance of
embodied and active learning in cognitive development and language acquisition.

3.2.8 Conclusion

In this work, we proposed the GLAM method for functional grounding (i.e., aligning
internal symbols to external dynamics so that the agent can use them to solve tasks
in the environment) of LLMs in interactive textual environments based on online RL.
Using our new BabyAl-Text environment, we performed several experiments studying 4
scientific questions. We showed how GLAM, which requires almost no environment-specific
modifications on the LLM, enables to drastically improve performances to solve RL tasks
in this environment as compared to zero-shot use of the LLM, to supervised fine-tuning,
and to RL fine-tuning of non-pre-trained LLMs. We showed how it boosts both sample
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efficiency and generalization abilities in zero-shot tests (both to new objects and several
new tasks). In addition to these key results, we provided in-depth ablations showing the
effect of several parameters (e.g., size) on grounding. We believe this method can act as
a milestone towards grounding and using LLMs in interaction with our world. Moreover,
from an RL perspective, these results hint that using LLMs as agent policies opens an
avenue for escaping the Tabula-Rasa RL setting and creating much more sample-efficient
RL agents.

However, this study still suffers several limitations. In particular, current experiments
are limited to a textual environment, as it allowed us to focus on functional grounding
without entangling any other form of grounding. Nonetheless, we believe that studying
the functional grounding of VLMs is of high interest and would permit the use of more
complex environments. Another limitation is the use of small action spaces and arguably
small LLMs. This is notably explained by the computational cost of performing scoring
over larger action spaces and fine-tuning larger LLMs. Directions, discussed in this
chapter’s discussion but not studied in this manuscript, could be explored for the former.
One way to reduce the latter (i.e., computational burden of computing gradients over
the entire LLM) is to use efficient fine-tuning techniques such as LoRA (Hu et al., 2022).
Tan et al. (2024)—as well as the empirical contributions presented in the remainder of
this manuscript—use LoRA to apply GLAM to larger LLMs.

Parallel to this, our study did not investigate how functionally grounding an LLM in
a specific environment impacts its general knowledge—whether about that environment
or more broadly—or its wider capabilities. In the next contribution, we aim to better
understand the broader effects of GLAM on LLMs. We begin by examining GLAM’s
impact on the representational abilities of LLMs, particularly their capacity to generalize
across diverse prompt formulations when extracting information from observations. We
then assess the extent of environmental knowledge acquired through GLAM.

3.3 An analysis of functionally grounded representations and
knowledge in LLMs

In the previous contribution, we demonstrated that GLAM—i.e., fine-tuning LLMs
through online RL—can effectively functionally ground language models. We assessed
gains in task-solving abilities as well as generalization to environmental changes (e.g., novel
objects or tasks). However, it remains unclear how GLAM affects the internal knowledge
and representations of the LLM itself. In this work, we introduce an experimental
framework designed to explore this question. We apply GLAM to multiple LLMs of
varying architectures and sizes across two distinct textual environments. Focusing on the
representational effects of functional grounding, we evaluate LLM agents using several
prompt templates. For each model, we report performance in four settings: (1) the
zero-shot baseline (i.e., before any functional grounding), (2) after grounding with GLAM
using a single prompt template, (3) after grounding with GLAM using multiple prompt
templates, and (4) after grounding with GLAM using a single prompt template combined
with a contrastive regularization loss designed to enforce invariance in the LLM’s latent
representations across different prompt formulations.
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Using this experimental setup, we assess several key capacities of functionally grounded
LLMs. We begin by examining the impact of prompt formulation on the task-solving
abilities acquired through functional grounding. Next, we propose a set of visualizations
aimed at shedding light on how grounded LLMs make decisions—specifically, how they
extract and utilize information from their prompts. Finally, we investigate how functional
grounding influences the LLMs’ broader understanding of their environment. To this end,
we conduct question-answering evaluations, where models are asked to respond to queries
about their environment—for example, identifying which objects are present or which
ones are most useful for completing tasks.

Overall, this work introduces multiple contributions:

e An experimental protocol scaling results presented in the previous section by using
multiple LLMs, environments, and varying prompts.

e Two changes to GLAM to deal with diversity in prompts: applying PPO’s loss on
each prompt or using a contrastive regularization.

e An in-depth study of the impact of functional grounding on representational abilities,
namely task-solving abilities and broader comprehension of the environment.

Our findings reveal that the performance of LLMs is highly sensitive to prompt varia-
tions, suggesting that fine-tuning with a single prompt template only induces superficial
updates and fails to improve the acquisition of new knowledge about the environment.
By analogy with observational overfitting in RL (Song et al., 2020b), we refer to this
phenomenon as prompt overfitting. We also show that the contrastive regularization we
propose significantly improves performance and the robustness to prompt variations, as
well as the acquisition of new knowledge about the environment (and performs better
than applying PPO’s loss on all prompt formulations). Altogether, our work® contributes
to a better understanding of RL-based functional grounding of LLMs in interactive
environments.

3.3.1 Related work

LLMs have shown remarkable capabilities to generate text and solve tasks in zero-shot
and few-shot scenarios. To enhance their performance and consistency, various prompting
methods have been developed Liu et al. (2023a). In addition, multiple studies have
highlighted the sensitivity of LLMs to minor perturbations in the prompt, leading to
substantially different outputs (Zhao et al., 2021; Sclar et al., 2024; Salinas & Morstatter,
2024). This sensitivity impairs the reliability and robustness of these models. Indeed,
certain input-agnostic sequences could trigger specific outputs, further illustrating the
brittleness of LLMs to prompt modifications (Wallace et al., 2019). The sensitivity of
LLMs persists regardless of model size, the number of examples, or the type of instruction
provided (Sclar et al., 2024; Zhao et al., 2021; Loya et al., 2023). These studies also
reveal poor performance consistency across models using the same prompt. To improve

8Code can be found here.

57


https://github.com/sal1717lim/Reinforcement-Learning-for-Aligning-Large-Language-Models-Agents-with-Interactive-Environments

58

Functional grounding of LLMs through online RL

q q P : <Begin Possible actions> close the fridge, Put the
Po " Possible act!ons of the agenlt. Close dirty plate in the fridge... <Close Possible actions>
the fridge, Put the dirty plate in the fridge ... <Begin Goal> Clean the Kitchen <End Goal>

Goal: Clean the Kitchen <Begin Observation> You can see a fridge....<End

Observation: You can see a fridge.... Observation>
Inventory: You are carrying .... <Begin Inventory>You are carrying...<End Inventory>
Next action of the agent: Next action of the agent:
B o - Rog9)=0
Goal g: R(O, g) =1l
Clean the kitchen
P, [ (Ov g)
. LLM
Observation O : P
You can see a ](0’ g)
fridge....
i
a;
put the kettle in the fridge. Pick up the mug from the floor

Figure 3.6: We use an LLM as agent policy in a textual environment Enwv.
The Env provides a fixed goal description g for the current episode, a
description of the agent’s observation o, and a scalar reward R(o,g) for
the current step. The goal and observation are formatted using a prompt
formulation P;.

the LLM outputs, a recalibration can estimate and adjust for the model’s biases with
additional parameters, which mitigates the effects of prompt sensitivity (Zhao et al.,
2021). Our work extends this research by evaluating the performance of LLM agents
across various prompt formulations and by mitigating prompt overfitting to preserve
semantic consistency in interactive environments.

3.3.2 Problem statement and methods

Problem statement

We operate, as in GLAM, in a textual RL setting. Given a vocabulary of tokens V',
our experimental framework can be conceptualized as a partially observable Markov
decision process M = (S, A, T, R,G,0,~) with S the state space, A C V¥ the action
space, G C VN the goal space, T': S x A +— S the transition function, R: S x G+ S
the goal-conditioned reward function, Obs : S +— V¥ = O the observation function that
maps a state s to a textual description and 7 the discount factor. For a trajectory ™ =
(s1,a1,...,5m,apm) of length H, we note R,(7) = Zflzl ~v*R(0, g) its cumulative discounted
reward given a goal g € G. The optimal policy is 7* = argmax, Egec rmn(r|g) [Rg(T)],
with 7(7|g) the probability of 7 following .

On top of this framework, we introduce multiple prompt formulations P = {P, }icq1,... n}s
where P, : O x G — PC V¥ formats text entries from observations and goals as prompt
inputs (see Figure 3.6). We assume that all formulations from P preserve information,
i.e., any optimal policy 7} using the prompt formulation P; € P can obtain the same
amount of rewards as an optimal policy 7* acting on original observations and goals:

Vg€ G,Vi€{l, -+ ,n} Erini(r19)[Rg(T)] = Erre(719)[12g(T)]-
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Applying GLAM

First, we define a policy 7, based on an LLM for solving tasks in M, given any prompt
formulation P; € P. For any goal g € G and observation o € O, we note Pp s (wg|p;?
,W<,) the probability of token w; generated by the prompt formulation P; and the
decoding history w.;. We also define Prrp(alpy? ) = H‘,;;‘OPLLM(wﬂpf’g ,w<y,) the
decoding probability of the sequence corresponding to action a € A given prompt p;*?.
Following Tan et al. (2024), we use a normalized decoding probability P79 (a|py? ) =
Porar(alp?? )™ to better balance actions of various sizes. From these quantities, we build
the policy as m(a|py” ) = PyTii(alp?? )/ Z7?, where Z7 = 37 ., P19 i (a|p;? ) is the
partition function. Then, we follow GLAM to train our LLM agents using PPO (Schulman
et al., 2017). Given a subset of prompt formulations P,,, € P, we note 7p,  an LLM
agent of parameters 6 trained by minimizing PPO’s loss PPO,,ss(0, P,,,) from trajectories

using prompt formulations P,,.

3.3.3 Contrastive learning

We propose an approach to dealing with multiple prompt formulations. We add
a contrastive loss to bring closer the latent representations zy(p;’) and zy(pj?) of
the same observation-goal pair (o, g) across prompts p;*’ and p}“, compared to latent
representations zg (pf/’g/) of other observations and goals (o', ¢’) of prompt pf/’g/. That is,

we alm to minimize:

CUP(O) = E_ max(A(z(pP?), z(p7))
(ng)’\’d Fppo

(0',9")~d" Frro (3.4)
— Azo(p?), 20(pS7)) + 1), 0)

where zg(p;"?) is the latent representation of textual prompt p;*Y produced by prompt
formulation P; applied to the observation-goal pair (o, g), A(z,2) = ||(2) — (2')||3 is the
Euclidean distance between two latent representations z and 2/, and d™Frr> is the joint
stationary observation-goal distribution of a policy using F,,,. In practice, we sample
pairs (o, g) from the collected trajectories, supposed to follow d™#ero.

Our final loss L jointly optimizes PPO,,,, with the contrastive loss C*7)(6) as follows:

L(97 PPP(H Pc) = PPOloss(ev Pppo) (35)
o (i.9)
T PG

P;,P;€P?

where o is a parameter regulating the impact of C'(9), P,,, represents the set of prompts
used for fine-tuning the LLM policy with PPO’s loss, and P, represents the set of prompts
used for the contrastive regularization C(*9). Following Ni et al. (2022), C®7) is only
applied to the representation of the first token of the prompt. Appendix B.1.4 provides
implementation details about contrastive regularization.
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3.3.4 Experimental Protocol

In this section, we introduce our experimental protocol. In particular, we detail our
two environments, prompt templates, and training approaches.

Environments

We conduct our experiments in two textual environments: 1) BabyAI-Text, and 2)
the Medium difficulty TWC Environment, proposed in Murugesan et al. (2021) (noted
TWC-Medium). In TWC, the agent must solve household tasks using textual observation
containing the description of the current room and a list of possible actions. These two
environments assess complementary skills in terms of semantics: BabyAI-Text requires
exploring and navigating between objects, whereas TWC-Medium requires the use of
commonsense knowledge and reasoning. See Appendix B.1.1 for more details.

Prompt Design

We define four distinct prompt formulations that all contain the same information:
the goal, the possible actions, the inventory, and textual observation. The first prompt
formulation P, follows a format where pieces of information are separated by line breaks
in the following order: possible actions, goal, observation, and inventory. P, is similar
to Py but switches the order of the information. P, employs a more rigid syntax with
delimiter tags, similar to an XML file. Finally, P; removes all rigidity in syntax and
follows a natural language format, paraphrased by a prompt writer. Examples of P,
and P, in TWC-Medium can be found in Figure 3.6, and detailed descriptions of all
prompt formulations are provided in Appendix B.1.2.

Training

We consider several LLMs, including encoder-decoder architectures (Flan-T5 78M and
780M (Rae et al., 2022)) and decoder-only architectures (GPT-Neo 1.3B (Black et al.,
2022)). We also propose partial results for Flan-T5 2.7B and Llama 7B (Touvron et al.,
2023) in Appendix B.3.4. We consider three different fine-tuning scenarios denoted as
Jg;)o: 1) the one prompt scenario oy where the LLM is fine-tuned with PPO on prompt
P, only, 2) the multiple prompt scenario o¢.3 where the LLM is fine-tuned with PPO on
prompts Py to Ps, and 3) the contrastive scenario o)® where the LLM is fine-tuned with
PPO on P, only, but using our additional contrastive loss considering prompts Py to Ps.
Fine-tuning is performed in both environments for 500k steps across 5 seeds. Importantly,
each experiment below uses a single formulation for collecting trajectories, and potentially
multiple formulations when computing the loss.

Evaluation

We evaluate the zero-shot scenario o,,, that corresponds to the pre-trained LLM
agent without any fine-tuning, and the fine-tuned scenarios af;;poon a set of test tasks.
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Regardless of the scenario used, we evaluate the agent’s performance on every single
prompt formulation. In addition, for the scenarios 0.3 and 00, we define a new prompt
formulation P, to analyze generalization to unseen prompts. P, follows a different template
with changes to the sections’ name, reordering, and an additional context tag (details
about this prompt in Appendix B.1.2).

3.3.5 Task-solving abilities with respect to prompt formulation

We begin by training all our models in both environments and using the different
scenarios. To evaluate the task-solving abilities, we define the success of an LLM agent in
the environment as a case where a trajectory reaches the intended goal g. We deduce
two metrics: 1) (SR): the success rate of the agent and 2) (SR): the mean success rate
across all prompt formulations and episodes.

In this section, all experiments use the formulation P, for collecting trajectories. We
provide in Appendix B.3.4 the results when using other formulations. Figure 3.7 shows
the SR values for Flan-T5 78M, 780M, and GPT-Neo 1.3B (also see Appendix B.3.4 for
the remaining models) obtained according to the different evaluation scenarios: o, 0g,
and oy.3.

We start by discussing the results obtained with the same scenario as the one used in
our section introducing GLAM (i.e., when the LLM is fine-tuned and evaluated using
the same formulation). We observe that, regardless of the environment or model, our
functional grounding significantly improves the agent’s performance. For instance, in the
TWC-Medium environment, both Flan-T5 78M and 780M achieve success rates exceeding
90% (compared to a maximum of 45% with o,,), and GPT-Neo 1.3B approaches a
success rate of 85% (compared to at most 20% with o.,). However, a notable decline
in performance is observed when using another prompt formulation at test time, with
a decrease of over 30% from using the original P, to the P; variation in TWC-Medium
and more than 30% from P, to P, in BabyAlI-Text. This drop outlines prompt overfitting
in LLMs. Importantly, this trend is also observed on larger models (Flan-T5 2.7B and
LLama 7B) as detailed in Appendix B.3.4.

We also observe that, for both o, and fine-tuned models, encoder-decoder models
outperform decoder-only architectures, even when the decoder-only models are larger.
One possible explanation for this is the superior representational abilities of encoder-only
transformers, as shown by prior work discussed in Chapter 2. Regarding disparities
between environments, we observe that the Flan-T5 78M model struggles in learning
appropriate policies in BabyAlI-Text.

We then compare the results of 0.3 and 0. In most cases, the SR of 00*® surpasses the
0.5, 00, and g3 (except for the 780M model on BabyAI-Text, where o)® underperforms
by 3%). This is noticeable since o{** learns the matching between prompt formulations
while og.3 learns each prompt independently. In terms of homogeneity, both ¢y and .3
scenarios yield consistent results (marked with * in Figure 3.7) for all TWC-medium
evaluations. Flan-T5 78M struggles in BabyAl-Text with both task-solving and achieving

homogeneity across prompts for o) and 0¢.3. For GPT-Neo 1.3B on BabyAI-Text,

oy® achieves homogeneity across prompts Py to P, but performance drops with Ps.

Nevertheless, the SR for 00" remains higher than that of o¢.3.

61



62

Functional grounding of LLMs through online RL

Flan T5 78M Flan T5 780M GPT-Neo 1.3B
Ly

- P
- P,
- P,

1.0

0.8

TWC 0.6

Medium 0.4 b
- h
0.0

SR 020 R 078 SR 087 gR ’0.94

1.0

0.8
£20.6
7}

0.4

0.2 B

0.0 0:3 ay
SR=0.19 SR=0.72 SR=0.67 SR=0.81

d
SR-038 SR-0.83 SR-085 SR. 0.9
1.0
BabyAl 08

SR= 025 SR= 034 .SR "0as gR ’0.52 SR= 041 SR= 069 sn 085 g‘R * 082 SR= 020 SR= 065 .SR 066 gR ’0.77

Figure 3.7: Success Rate (SR) in BabyAI-Text and TWC-Medium. The
x-axis indicates the training scenario, while colors represent the prompt
formulation used to format inputs during test episodes. The asterisk (*)
indicates instances where the chi-squared test exceeds the homogeneity
threshold (p-value > 0.05). Bold values for SR. represent the best result in the
evaluation. Results show that the LLM exhibits heterogeneous performance
when the prompt formulation used during training differs from the one used
at evaluation, with a drop in success rate of up to 30% in certain scenarios.

0 3
00:3 )

78 M | 0.77 +0.11 (3%) | 0.92 4 0.02 (97%)
780 M | 0.80 + 0.06 (4.7%) | 0.86 & 0.05 (91%)

1.3B | 0.66 &+ 0.02 (99%) | 0.76 & 0.03 (98%)

Table 3.2: Success Rate (SR) in TWC-Medium using prompt for-
mulation Ps; unseen during training. The values in parentheses represent
the x* homogeneity test results, red indicates heterogeneity (p-value < 5%)
and green indicates homogeneity (p-value > 5%). o 0:3 scenario demonstrates
superior performance in terms of SR and homogeneity compared to go:3
across all models.

We also evaluate in Table 3.2 the generalization capabilities of 03 compared to .3
using the prompt formulation P, which was not seen during training in either scenario.
The results indicate that the mean success rate on P is higher for )3 than for oy.3,
showing superior generalization capabilities across all three model sizes. To validate
these findings, we conduct a x? test to verify the homogeneity of P; results compared
to the mean results obtained from the training prompts. The values in parentheses
summarize the results, showing that, for all 0* models, the success rates on the unseen
prompt P, follow the same distribution as the training success rates. This indicates robust
generalization to unseen prompts, in contrast to g.3, where the 78 M and 780M models
do not exhibit the same distribution of results as during training. This finding supports
the conclusion that regularization helps mitigate overfitting.

3.3.6 Analyzing the functionally grounded latent representations

To further analyze prompt sensitivity observed in the previous section, we investigate
the latent representation of states formatted with different prompt formulations on TWC-
Medium. As in GLAM, we consider the representations outputted by the last layer for
the token preceding the action (i.e., the last token of the prompt for decoder-only models
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and the padding token for encoder-decoder models). This also corresponds to the latent
representation given to our value head for PPO.

Measuring prompts similarity

We start by delineating the disparities between prompt formulations by computing
the cosine similarity of their latent representations pre and post fine-tuning. Given a
set of observation-goal pairs I' = {(0, ¢)}, the similarity between representations using
different inputs formatted by a single prompt formulation Py is defined as

Intra(P;) = |F‘21—|F| Z cos (zf’g,zf/’g,) :

(0,9)€T
(o',9")€T\{o0,9}

Besides, we assess the similarity between representations from different prompt formula-

tions as: 1 Y Y
Inter(P;, P;) = iul Z cos (279, 259) .

’ ’ P
(o,8)€l’

We compare in Table 3.3 the intra-prompt and inter-prompt similarities to measure
the topology of the latent representations of states according to our different scenarios,
averaged over any pair of prompt formulations. The most striking result is that LLMs
tend to cluster prompts formulated with the same prompt formulation (Intra ~ 1), even
when they correspond to different goal-observation pairs. In contrast, the same pair
formulated with different prompt formulations exhibits low similarity (Inter < 0.5). The
low similarity between prompts and the high similarity within prompts suggests that
LLMs tend to focus on capturing syntax rather than semantics. Moreover, the last column
of Table 3.3 shows a significant increase in the inter-prompt proximity for all models,
confirming our results that applying the contrastive loss can help disregard the prompt
formulations at the benefit of its content.

Visualizing prompts similarity

We visualize the topology of GPT-Neo’s latent representation of our prompts using
UMAP (McInnes et al., 2018) in Figure 3.8. This visualization illustrates prompt
overfitting. In particular, we see no overlap between clusters of prompt formulations
in 0,,, nor og. Importantly, using o¢.3 does not mitigate this, highlighting the need for
methods tackling overfitting in both task efficiency and state representation. However,
results from o) indicate that the topology of the latent space changed. The latent
vectors are no longer clustered by formulation and now overlap, suggesting that the model
has learned to match similar states together. Further details regarding distances and

visualizations can be found in Appendix B.3.6.

Measuring prompt information use

We then go further and analyze which parts of the prompts (goal, possible actions,
observation, and inventory) are used by Flan-T5 78M when selecting the action. We study
the relationship between inputs and prediction actions using the Integrated Gradients
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Models O s 00 00:3 08:3
0.992 0.991 0.991 0.907
Intra
T8M + 0.003 | £0.003 | £ 0.003 | =+ 0.017
0.376 0.382 0.371 0.806
Inter
+ 0.019 | +£0.020 | £ 0.020 | £ 0.029
0.998 0.997 0.998 0.939
Intra
T80M + 0.001 | +£0.001 | £0.001 | £0.017
0.469 0.458 0.47 0.812
Inter
+ 0.462 | +0.449 | + 0.461 + 0.06
0.995 0.994 0.997 0.994
Intra
1.3B 4+ 0.001 | +£0.001 | £ 0.001 | £ 0.017
0.552 0.539 0.501 0.94
Inter
+ 0.03 + 0.01 + 0.05 + 0.009

Table 3.3: Inter and intra-similarity comparison for Flan-T5 78M, 780M,
and GPT-Neo 1.3B models on TWC-Medium on our different scenarios. For
all models, we observe that Intra approaches 1, while Inter is consistently
below 0.5. This indicates that the LLMs tend to cluster prompts based on

their formulation rather than on content. A similar trend is observed for
both 9.3 and oo scenarios.
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Figure 3.8: UMAP visualization of prompts’ hidden representation
in GPT-Neo 1.3B across 100 states of TWC-Medium using four
prompt formulations. This illustrates a clustering based on prompt
formulation over semantics in both o, and fine-tuned models with oo and oq.3.
Additional results for other prompts used to collect trajectories during
training can be found in Appendix B.3.7.

algorithm (Madsen et al., 2022) to generate saliency scores for each element of the input.
For each scenario o, and each prompt formulation P;, we compute the averaged saliency of
prompt tokens for every observation-goal pair (o, ¢) from I'. Saliency scores are computed
using the Inseq toolkit (Sarti et al., 2023), as the Integrated Gradient of the output
probability of the policy m(a*|p;” ) with respect to the tokens of the prompt p;?, with a*
the most likely action regarding the observation-goal pair o, g. To enhance interpretability,
saliency scores for all prompt tokens are finally aggregated depending on the part of the
prompt they belong to, among {possible actions, goal, observation, inventory}. We do
so after filtering out the top 5% most significant tokens from each section to eliminate
perturbations caused by irrelevant tokens.
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Figure 3.9 shows the saliency scores of prompt parts. We can observe that the parts
used vary between prompt formulations and scenarios. For instance, in o,,, our LLM
prioritizes the inventory when P; is used, whereas switching to Py and P, shifts the focus
to the possible Actions. This can be explained by the fact that Py and P, follow the
same order of information (see Appendix B.1.2), and therefore the LLM finds the possible
actions in the same position. Fine-tuning our LLM alters the saliency scores compared to
0.s, with a strategy prioritizing the goal over possible actions when using FPy. However,
the LLM still focuses on different parts when changing the prompt formulation. Using o¢.3
also results in heterogeneous saliency maps across prompt formulations, showing that our
LLM continues to process the prompts differently despite being fine-tuned with multiple
prompt formulations. However, 63 leads again to higher homogeneity, strengthening our
results on the superior representational power of the contrastive regularization. Additional
results can be found in Appendix B.3.7.
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Figure 3.9: Saliency maps of Flan-T'5 78 M across scenarios on TWC-
Medium. The maps show that the LLM focuses on different sections of
the prompt depending on the prompt formulation. This variation is linked
with performance changes when the prompt formulation is altered. This
phenomenon is observed in 0,5, 0o, and 0.3 scenarios.

3.3.7 Environmental knowledge acquired through functional grounding

We end our analysis by assessing the environmental knowledge acquired by GPT-Neo
1.3B by measuring its accuracy in question-answering (QA) related to TWC-Medium,
which includes object counting (TWC OC) and task-related questions (TWC TR). We
follow the methodology from Xiang et al. (2023) for constructing a set of questions based
on the optimal successful trajectory of TWC-Medium. First, we create task-related
questions (TWC TR) by generating multiple-choice questions asking which object is the
most useful for solving a task. Then, we generate object counting questions (TWC OC)
in which we present to the LLM a trajectory in the environment and prompt it to count
the number of objects in a specific location.

We measure the accuracy of GPT-Neo 1.3B in TWC TR and TWC OC datasets before
and after fine-tuning over all training scenarios in Table 3.4. Before fine-tuning, our LLM
generally struggles to answer environment-related questions, exhibiting poor performance
across both QA datasets. Following fine-tuning with o or 0g.3, the accuracy shows only
superficial improvement for the TWC TR, and minor enhancements are observed in the
TWC OC compared to the 0., setting. This indicates that fine-tuning in these scenarios
leads to superficial updates. However, fine-tuning with the o{** scenario results in a more
substantial improvement compared to other scenarios, with at least a 13% increase in
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TWC TR | TWC OC
0.5 | 0.4866 * | 0.0876 ***
oo | 0.4901 * | 0.1340 ***
003 | 0.5019 * 0.2526 *

093 | 0.6322 0.5155

Table 3.4: Environmental knowledge of GPT-Neo 1.3B on TWC TR
and TWC OC datasets. We plot the success rate over questions, with * and
*¥% corresponding to the p-value (resp. < 0.05 and < 0.001) of Welch’s t-test
to compare the performance between o0 and other scenarios. We observe
a significant improvement with ¢ scenario compared to 0.5, 0o, and 0q.3
scenarios across both datasets.

TWC TR accuracy, and respective gains of 25%, 35%, and 43% over the oy.3, 0p, and
0.5 scenarios. These findings highlight that o) not only enhances robustness to prompt
variations but also improves the LLM’s understanding of the environment’s dynamics.

3.3.8 Conclusion

In this work, we proposed an in-depth study of how functional grounding, through
GLAM, affects the internal representations and knowledge in LLMs. While Section 3.2
focused on the general task-solving performance (that is, the functional competence),
this contribution focused on shedding light on how functionally grounded LLMs make
decisions based on the observation they access through a prompt, as well as how functional
grounding helps the LLM acquire knowledge about the environment’s dynamics. For
this, we introduced an experimental protocol along with a large-scale study over varying
LLMs, environments, and prompts. Our results showed that fine-tuning LLMs with
GLAM using a single prompt formulation leads to strong prompt overfitting, resulting in
high prompt sensitivity for functional competence, prompt-specific information seeking
in the observation, and little environment knowledge. We also showed that fine-tuning
simultaneously on multiple prompt templates still results in prompt-specific strategies.
Finally, our results indicate that our contrastive learning regularization is the only approach
leading to robust strategies that rely on the same information from the observation,
regardless of the prompt formulation, and increased abilities at answering questions about
the environment’s dynamics.

Overall, our study contributed to a better understanding of the impact of functional
grounding of LLMs, from functional competence and beyond. Interestingly, our results
show that functional grounding alone helps LLMs capture environments’ dynamics and
leverage this knowledge to answer questions. Nonetheless, we believe many questions
remain open regarding how GLAM influences other core abilities of an LLM. For example,
does fine-tuning an LLM to control an environment enhance its capacity to predict or
explain that environment’s dynamics explicitly? Conversely, does grounding in a specific
environment constrain the model’s plasticity or hinder its ability to acquire new skills in
different settings?
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3.4 Discussion

In this chapter, we introduced the notion of functional grounding and highlighted the
role of embodied and active experience in developing functional competence, that is, the
capacity to use language to achieve goals. In Section 3.2, we presented the first empirical
contribution of this research: the GLAM approach, which uses online reinforcement
learning to functionally ground LLMs. Our results showed that GLAM significantly
enhances the task-solving abilities of LLMs in interactive environments and produces
functional competence that generalizes to new tasks and unseen objects. Critically,
we demonstrated that active learning via online interactions is essential for functional
grounding: it outperforms passive imitation learning (behavioral cloning), even when the
latter is trained on trajectories from an optimal policy.

We further investigated the internal impact of functional grounding in Section 3.3,
focusing on the representational effects of GLAM across LLM architectures, environments,
and prompt variations. Our analysis revealed a limitation: prompt overfitting, where
functional grounding led to shallow adaptations tied to the specific language formulations
seen during training. This limitation echoed earlier findings from Section 3.2, where
LLMs trained on a single language failed to generalize to others. We found that grounded
LLMs tended to rely on prompt-specific cues and lacked a deeper understanding of
the environment’s dynamics—struggling, for example, with answering comprehension
questions about the environment. To address this, we introduced a contrastive learning
regularization that encourages the LLM to learn representations invariant to prompt
formulation. This significantly improved the robustness of the grounded competence
across prompt variants and enhanced the model’s ability to answer environment-related
questions. Overall, this chapter demonstrated that online RL paired with interactive
environments is a promising path for imbuing LLMs with functional competence—but
also that the way in which language is grounded matters significantly.

Despite these advances, several limitations remain. First, we restricted our study to
purely textual settings, where both observations and actions are expressed in natural
language. While this allowed us to isolate and study functional grounding in controlled
environments, it limits applicability to broader, multimodal scenarios. Extending func-
tional grounding to other modalities—particularly vision—is a natural and necessary
next step. Recent efforts have begun addressing this by applying GLAM-style fine-tuning
to VLMs. For instance, Zhai et al. (2025) combined BC and PPO to train VLMs in
visual environments, though they reported limited gains in functional competence. In
contrast, Aissi et al. (2025) proposed a hybrid setup where a fine-tuned VLM provides
textual descriptions of visual scenes to a language model grounded using GLAM. This led
to stronger results but required supervised fine-tuning of the VLM to produce informa-
tive descriptions. Much work remains to fully integrate multimodal understanding and
functional grounding in VLMs.

Another limitation stems from our observation that GLAM may induce only superficial
changes in LLMs’ internal representations—particularly when grounded using limited
linguistic diversity. While our contrastive learning approach helped mitigate prompt
overfitting, it still required manually designed prompt variations from the environment.
An alternative and complementary strategy would be to ground similar forms of functional
competence across diverse environments. In humans, functional skills are deployed across
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varied contexts, which helps reinforce general strategies. This environmental diversity
could also support broader generalization in action spaces—for example, enabling LLMs
to use synonymous actions. As seen in Section 3.2, training with a fixed action space in a
single environment offered no such generalization.

The next chapters build on these insights to further develop functional grounding
through online RL and interactive environments. Chapter 4 will explore the predictive side
of functional competence, in contrast to the control-focused perspective of this chapter.
We will discuss how humans rely on intuitive theories to predict their world and propose
a curiosity-driven RL framework for enabling LLMs to generate abstract, language-based
models of environmental dynamics. Chapter 5 will then examine how to scale functional
grounding to complex, open-ended environments. We will draw inspiration from human
skill acquisition through autotelic learning and present methods that incorporate teacher-
student scaffolding and metacognitive monitoring—two mechanisms critical to designing
autotelic LLM agents with lifelong learning in rich environments.
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Moving beyond control: World modeling
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The previous chapter introduced the concept of functional grounding and presented
GLAM, a method based on reinforcement learning for functional grounding of LLMs. Our
analysis in Section 3.3 further explored how acquiring functional competence through
interactions and RL influences the LLMs’ internal representations of their environment.
The results suggest that GLAM enables LLMs to capture some aspects of environmental
dynamics, albeit in a limited way. When we introduced functional grounding in Section 3.1,
we framed functional competence as the ability not only to control but also to model
and predict external dynamics through the use of symbols. This stems from the close
connection between action and modeling: making decisions requires anticipating how
actions will affect the world. In this chapter, we shift focus to how LLMs might explicitly
acquire world modeling abilities through functional grounding. Drawing inspiration from
how humans—vparticularly children—progressively refine internal models of the world,
we propose a framework in which an LLM autonomously explores an environment and
generates natural language hypotheses describing its dynamics. By combining Bayesian
inference to refine hypotheses with intrinsically motivated RL to guide evidence collection,
we argue that this framework enables continual and autonomous improvement of the
LLM’s world modeling abilities. Before detailing this framework, we begin by examining
the role and nature of world models.

Collaborations and scientific output — This chapter presents a contribution that
originated as a follow-up project to the work on GLAM. The project was structured as the
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Master’s internship of Guillaume Levy (over the summer 2024) co-supervised by Thomas
Carta and myself, with the objective of investigating how online interactions with an
environment could improve the world modeling abilities of LLMs. While Guillaume was
primarily responsible for implementing and running the experiments, all major decisions
throughout the project were made jointly by the three of us. We were later joined by
Cédric Colas, whose input significantly shaped the project—particularly by encouraging
us to explore theory-based world models. Guillaume and I co-led the writing of a short
version of the paper, which was presented at the RLDM conference: Guillaume Levy,
Cédric Colas, Pierre-Yves Oudeyer, Thomas Carta, Clément Romac. 2025. WorldLLM:
Improving LLMs’ world modeling using curiosity-driven theory-making. Multi-disciplinary
Conference on Reinforcement Learning and Decision Making (RLDM). 1 also took the
lead in writing a longer preprint version of the work, which is presented in Section 4.2 of
this manuscript.

4.1 World models

The question of how humans create mental models of their world is vast and has long
been a central concern in psychology (Craik, 1943; Johnson-Laird, 1983). Among the
many facets explored, considerable attention has been devoted to understanding how
children form mental models of objects in their environment—particularly through the
acquisition of concepts (Piaget, 1954; Gelman & Legare, 2011). Parallel efforts have
investigated how humans model other humans, especially through the development of
Theory of Mind—an essential component of functional competence in social settings
(Wimmer & Perner, 1983; Gopnik & Wellman, 1992). A further key focus has been on how
the construction of such world models influences a child’s exploration behavior (Piaget,
1954). In essence, children engage with their environment to gather evidence in support
of—or in contrast to—their current internal model. These insights have naturally inspired
mechanisms aimed at equipping artificial agents with internal world models that guide
and structure their interactions with the environment.

4.1.1 World models in RL agents

“One way of understanding the predictive model inside of our
brains is that it might not be about just predicting the future in
general, but predicting future sensory data given our current motor
actions. ” — Ha & Schmidhuber (2018)

Building world models in artificial agents has long been a central research focus (Ha
& Schmidhuber, 2018; Ding et al., 2025). In RL, model-based approaches have been
studying how to learn components of the MDP, such as the reward and transition functions
(Moerland et al., 2023). This contrasts with the model-free RL approaches primarily
discussed throughout this manuscript, where agents do not construct an explicit model
of the environment but are assumed to capture its dynamics implicitly through policy
optimization. Much of the existing literature centers on learning neural models of the
transition function, called forward models, that predict the next observation o, the agent
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will encounter after taking an action a given the current observation o;. Such forward
models can significantly simplify the search for an optimal policy, for example by enabling
multi-step planning (Silver et al., 2016; Schrittwieser et al., 2020; Hansen et al., 2022), or
by allowing agents to train entirely on imagined transitions, i.e., simulated interactions
with the learned model rather than the real environment (Hafner et al., 2020, 2021, 2025).
See Figure 4.1 for a schematic overview of these classic interactions between the policy,
environment, and model in model-based RL.
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Figure 4.1: Overview of the classic interactions between a model and a policy
in model-based RL from Moerland et al. (2023). While classic model-free RL
only considers the direct interactions between the policy and the environment
(the loop e-f), model-based RL introduces interactions with a model learned
from environmental data (g). The interactions between the policy and the
model (the loop b-c) can be used for multi-step planning before choosing an
action (d) or for policy improvement through imagined transitions (c).

Moreover, evidence from developmental psychology indicating that children’s explo-
ration is driven by the acquisition of internal world models has inspired the design of
various intrinsic motivation signals for RL agents. As discussed in Chapter 2, several
approaches propose rewarding transitions that are poorly predicted by a forward model
trained on data collected from the agent’s policy. For instance, Schmidhuber (1991a);
Pathak et al. (2017) introduced intrinsic rewards based on high prediction errors, while
Schmidhuber (1991a); Oudeyer & Kaplan (2007); Lopes et al. (2012); Houthooft et al.
(2016) instead rewarded transitions that led to improvement in the forward model it-
self. However, learning low-level, high-fidelity forward models through gradient descent
does not fully reflect the nature of human world modeling as described in psychological
research. In particular, human world models appear to be: 1) abstract and inherently
imprecise; 2) susceptible to revision based on only a few critical pieces of counter-evidence;
and 3) focused on more than just short-term outcome prediction—for example, they
capture causal relationships and influence how information is interpreted and prioritized
(Johnson-Laird, 1983; Tenenbaum et al., 2011).
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4.1.2 Mental models with theories

Several theories have been proposed in psychology to formalize how humans represent,
encode, and update their internal world models. Among these, the theory theory has
gained significant attention. This framework posits that children—and adults (Gopnik,
1996 )—rely on intuitive theories to both predict and explain their experiences (Johnson-
Laird, 1983; Gopnik & Meltzoff, 1997; Gelman & Legare, 2011). Gopnik & Meltzoff (1997)
argue that cognitive development in children can be viewed as a process of iterative theory
refinement, shaped by the accumulation of experiential evidence throughout childhood.
This perspective offers a compelling explanation for the sharp developmental transitions
observed at specific ages (e.g., the sudden emergence of object permanence) (Piaget,
1954).

According to Gopnik & Meltzoff (1997), theories exhibit several key properties:
they are tied to evidence, abstract in nature, causal—explaining relationships between
events—and dynamic, evolving as new evidence is encountered. A critical strength of such
theories lies in their capacity to support both predictive and counterfactual reasoning,
allowing individuals not only to anticipate outcomes but also to reason about alternative
possibilities. In essence, they reflect internal beliefs about the causal structure of the
world (see Figure 4.2). Similar to what has been discussed for cognitive development by
the embodied movement (see Chapter 2), Gopnik & Meltzoff (1997) further emphasize the
deep interrelation between theory development and language acquisition. They suggest
that, as children interact with caregivers and peers, language facilitates the communication
and negotiation of shared theories, with semantic development progressing in tandem
with theory refinement. Intuitive theories can then be communicated, ranging from simple
utterances (e.g., "gravity makes the apple fall") to more formalized versions (e.g., through
mathematical models).

i . Hypothesis
Experimentation AE c . q
Revision

rJrr

The machine makes sound when
Hypothesis 1: at least one of them is a yellow chject
Hypothesis 2: more than three objects are present

Time

The ne makes sound when
Hypothesis 1: a t one of them is a yellow object

Hypothesis 2: there are at least two objects

¥ chine makes s
Hypothesis 1: at lsast one of t i ellow object

o cylinder that is ed

Figure 4.2: Example of the process of active intuitive theories refinement
through interactions from Piriyakulkij et al. (2024).

These psychological insights have inspired various computational models of theory-
based cognitive development and world modeling. A particularly influential line of work
has modeled theory refinement as a (constrained) stochastic search process using Bayesian
inference (Goodman et al., 2008; Ullman et al., 2010; Ullman & Tenenbaum, 2020). This
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framework captures how theories can be generated and iteratively updated to increase
the likelihood of observed evidence, guided by a prior over possible theories. Such priors
can encode structural constraints or even innate biases, echoing the notion of inborn
capacities discussed by Gopnik & Meltzoff (1997). More recently, several studies have
explored how Bayesian inference can be leveraged to uncover an environment’s internal
dynamics by representing theories as executable computer programs (Tsividis et al., 2021;
Tang et al., 2024; Wang et al., 2024b; Li et al., 2024; Piriyakulkij et al., 2024). These
approaches demonstrate that LLMs are particularly well-suited to generating candidate
theories—either directly as programs or as natural language hypotheses subsequently
converted into programs—based on evidence presented in the prompt. In such settings,
the LLM acts as a proposal distribution, generating hypotheses that are then evaluated
and refined within a Bayesian inference loop.

We argue that, inspired by how humans explore their environment to refine their
mental models, the world modeling abilities of LLMs should be functionally grounded
through autonomous exploration. Specifically, we propose allowing an LLM to freely
interact with its environment in order to improve its understanding of the environment’s
dynamics. To guide this process, we draw from the model-based RL literature, which
has shown that rewarding exploration based on errors made by a forward model leads to
efficient data collection. In our approach, the LLM itself serves as the forward model: a
policy is trained to explore the environment in ways that expose the LLM’s predictive
failures. The resulting transitions—where the LLM’s predictions are inaccurate—serve as
learning signals. From this evidence, we build on theory-based world modeling approaches
by iteratively generating and refining natural language hypotheses about the environment’s
dynamics. These hypotheses condition the LLM when acting as a forward model. We
argue that LLMs’ natural capacity to integrate prompt information makes them especially
well-suited for leveraging such natural language theories. Intuitively, our framework aims
to generate theories that help the LLM better predict and reason about its environment.

4.2 WorldLLM: Grounding LLMs’ world modeling using
curiosity-driven theory making

LLMs possess broad knowledge about the world, but leveraging this knowledge for
precise dynamics modeling remains challenging (Vafa et al., 2024). In other words, they
lack grounding of their world modeling abilities, and, in particular, functional grounding,
which we argued involves grounding the symbols’ processing to model and predict external
dynamics to solve goals. Recent work has shown promise in using LLMs as forward
models by fine-tuning them on embodied experiences (Xiang et al., 2023). However, such
an approach is computationally costly given the large amount of interaction data required
as well as the cost of gradient-based fine-tuning of LLMs. Contrary to this, LLMs are
known to possess general knowledge that can be adapted using careful prompting (Zhang
et al., 2024a).

In the previous section, we discussed theory-based world modeling methods. Current
approaches either generate programs to capture environment dynamics directly (Tsividis
et al., 2021; Tang et al., 2024; Li et al., 2024) or use natural language rules as an
intermediate representation (Piriyakulkij et al., 2024; Wang et al., 2024b). Leveraging
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the world model’s structure as well as human-provided prior distributions over possible
world models, theory-based methods are usually more sample-efficient than gradient-based
ones. More importantly, the resulting world model often shows stronger generalization
abilities. However, contrary to gradient-based approaches that usually do not require any
expert-given knowledge, theory-based methods mostly rely on hand-crafted theory spaces.
Finally, one major challenge in learning a world model lies in the data collection. Indeed,
collecting transitions that cover the space of possible outcomes in the environment is key
for learning an accurate world model. Notably, both classic model-based RL approach
and theory-based methods agree on the importance of active data collection focusing on
evidence with low likelihood under the current model (Schmidhuber, 1991a; Pathak et al.,
2019; Burda et al., 2019b; Piriyakulkij et al., 2024).

In this work, we present WorldLLM, a framework for autonomous improvement
of an LLM’s world modeling abilities. Our approach combines 1) probabilistic theory
induction to produce hypotheses that are given in our LLM’s prompt to improve its
predictions and 2) curiosity-driven RL to explore the environment and collect transitions
poorly predicted by the current hypotheses. Formally, our LLM’s world model is the
conditional probability P(s;y1|s¢, as, H), where s, represents a state, a;, an action, and
H a set of natural language hypothesized theories. This probability is computed by the
LLM by giving it s, a;, and H in its prompt and taking the probability of s;,; to follow
this prompt. Our key insight is that natural language theories can help ground an LLM’s
broad knowledge into precise predictive power by providing domain-specific rules (Zhang
et al., 2024a). Our approach consists of three interacting components: (1) our LLM
that computes P(syy1|s¢,as, H) by conditioning its predictions on both a state-action
pair and the current hypotheses, (2) a theory generator that updates natural language
hypotheses using Bayesian inference, and (3) a curiosity-driven reinforcement learning
agent trained to collect evidence against the current hypotheses. Inspired by how humans,
from children to scientists (Piaget, 1954; Gopnik & Meltzoff, 1997), actively update their
internal world model by performing experiments, our agent’s exploration provides new
evidence for hypothesis refinement, creating a virtuous cycle of improvement.

We demonstrate our approach in a video game environment where agents manipulate
and combine objects, showing that WorldLLM successfully learns accurate predictive
models while generating human-interpretable theories about environment dynamics. This
work contributes to a growing body of research on improving LLMs’ world modeling
capabilities and grounding their knowledge in specific domains. By combining ideas from
theory-based RL, Bayesian inference, and active exploration, we provide a framework for
learning structured, interpretable world models that leverage both the broad knowledge
of LLMs and domain-specific experiences without any costly gradient-based learning.

4.2.1 Improving LLMs’ world model with World LLM

Problem statement

We consider an environment framed as a Markov Decision Process M = (S, A, R, T)
with S the state space, A the action space, R : S x A x S — R the reward function,
and 7 : S x A— S the transition function. In particular, as our main objective is to
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Figure 4.3: Our framework aims at improving an LLM’s ability to predict
the outcome of state-action pairs by augmenting it with natural language
hypotheses about the world (Statistician). WorldLLM alternates between
generating hypotheses (Scientist) and collecting evidence to update these
hypotheses (Ezperimenter). The former uses Bayesian inference with an
LLM as the proposal distribution. The latter uses curiosity-driven RL to
train an agent to collect experiences that have a low likelihood under the
Statistician with the current set of hypotheses.

study world modeling abilities, we consider reward-less environments where no particular
task must be solved, i.e., the reward function always returns 0. We focus on textual
environments where, given a vocabulary V and a maximum sentence length N, observations
o€ 8 C VY and actions a € A C VV are represented in natural language.

In such a setting, we study how to rapidly learn an LLM-based parametric model PLLM
of the transition function 7 (also called forward model) given a budget of experiences
T allowed to an agent. This parametric model outputs a probability distribution over
all possible next states given a state-action pair. The natural approach from the RL
literature to improve this forward model uses gradient-based updates (Ha & Schmidhuber,
2018; Hafner et al., 2020; Schrittwieser et al., 2020). However, the scale of modern LLMs
makes such an approach particularly costly. LLMs’ natural in-context learning abilities
open up an alternative approach: providing natural language hypotheses in the prompt
to improve their predictions. This method is less costly, known as more sample efficient
(Le Scao & Rush, 2021), and provides human-interpretable updates. Consequently, the
parameter we seek to optimize is a set of hypotheses H C V¥ that, when given as input
to the forward model (in addition to state-action pairs), maximizes the likelihood of the
experienced next states.

We define the global optimization objective as finding the smallest set of hypotheses
H C H that maximizes the forward model’s probability of all possible transitions in the
environment:

max / PLEM (S|, a, H) ds' dads
SxAxS

min |H| (4.1)

subject to H € H
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As the full transition space is unknown to our agent, it can only use the collected
transitions within the budget of T experiences. Note that it is essential for the agent
to efficiently explore the environment within these T experiences, as collecting only
similar transitions would lead to hypotheses that predict these transitions well but not
the remainder of the transition space. For evaluation, as computing a forward model’s
performance on the whole transition space is usually intractable, we define a hidden test
set D,.,; containing representative transitions.

WorldLLM

In this section, we present WorldLLM, our methodology for addressing the challenge
outlined in the preceding section. Our framework comprises three interconnected com-
ponents: the Statistician, the Scientist, and the Experimenter. The interactions among
these components are illustrated in Figure 4.3. The Statistician represents our LLM-based
forward model (i.e., PLLM) and is used to evaluate the current hypotheses. The set of
hypotheses H the Statistician uses is produced by the Scientist, another LLM. These
hypotheses are derived from trajectories collected from interactions with the environment
using the Experimenter. WorldLLM alternates from during 7" iterations between evidence
collection from the Experimenter and hypotheses refinement from the Scientist. In the
subsequent sections, we elaborate on how these modules contribute to our objective’s
optimization.

Statistician — We first detail the Statistician module, whose role is to evaluate a set
of hypotheses H; on collected transitions. We start by renaming, for the sake of clarity,
PLLM Ly P9t As described above, the Statistician is a forward model computing the
likelihood P%t(s'|s, a, H;) of the next state s’ given a state-action pair (s,a) and a set of
hypotheses H;. This likelihood is obtained by the LLM by giving it s, a, and H; in the
prompt and taking the probability of s’ to follow this prompt.

Scientist — To improve the Statistician’s prediction as a forward model, the Scientist’s
role is to search through the space of possible sets of hypotheses. To efficiently explore
this space, we take inspiration from (Wang et al., 2024b; Piriyakulkij et al., 2024) and
use a Bayesian inference framework. In particular, we rely on another LLM P*¢ as
the proposal distribution which generates a candidate set of hypotheses following the
distribution PS¢(H!|D,, H,) given a data set of collected transitions D, and the current
best hypotheses candidate H,. We assume a uniform prior (i.e., no particular prior) over
the space of hypotheses. For this paper, we chose the Metropolis algorithm, a variant of
the Metropolis-Hastings algorithm, which iteratively generates candidate hypotheses for
nsteps. The full algorithm is displayed in Algorithm 1 and more details are provided in
Appendix C.2.

Experimenter — Given a set of hypotheses produced by the Scientist, the Exper-
imenter must collect transitions that will help assess and refine the hypotheses (i.e.,
transitions that have a low likelihood under the Statistician). We propose to explore
two types of approaches. First, we design oracle agents, allowing us to disentangle the
efficiency of data collection and hypotheses refinement in WorldLLM.
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Algorithm 1 WorldLLM

1: Input: T total number of iterations, nsteps number of Metropolis steps at each
iteration, PS* the Statistician’s distribution, PS¢ the Scientist’s proposal distribution,
7w the Experimenter

2: Initialize H; + null

3: fort =0to T do

4: Collect trajectories Dy <—env(m)

5: Evaluate current hypotheses current _score = 5. logP%(s|s, a, Hy)

(s,a,8")~Dy

6: Set I:It = Ht

7: for i = 0 to ngteps do > Metropolis step
8: Generate hypotheses H! ~ P5¢(-|Dy, Hy)

9: Evaluate candidate hypotheses score = > log PS(s'|s, a, HY)

(s,a,8")~Dy

10: Generate a random number u ~ U(0, 1)
11: if log(u) < score — current _score then > Accept or reject
12: Update hypothesis H, = I:IZ
13: Update score current score = score
14: Set Hy = _E[t
15: Update Experimenter 7

For the oracles, we propose the following hard-coded policies:

e A policy that collects the same distribution of transitions as the test set’s distribution
(O-Ideal)

e An optimal policy that progressively moves from collecting simple transitions to
collecting the hardest ones (O-Curriculum)

e An optimal policy that produces the sequence of actions necessary to collect the
hardest transitions (O-Hardest)

While O-Hardest will collect complex transitions, it may not cover the full transition space.
In comparison, O-Ideal matches the test set distribution. However, the iterative process
of WorldLLM may require the Experimenter to focus for several iterations on particular
subspaces of the transition space for the Scientist to produce accurate hypotheses. While
O-Hardest and O-Ideal lack such a developmental trajectory, O-Curriculum focuses on
specific transitions for an arbitrary number of collections. We also study the performance
of a policy acting randomly (O-Random), which is unlikely to collect complex transitions.

Then, we introduce RL-based Experimenters. We propose to study three curiosity-
based intrinsic rewards derived from P5* (Oudeyer & Kaplan, 2007). First, we introduce
RL-LogP, where the Experimenter uses the prediction error (Schmidhuber, 1991a; Pathak
et al., 2017; Burda et al., 2019a) as reward by receiving r = —logP5!(s'|s, a, H,) for each
collected transition (s, a, s’). While usually efficient, this method is also known to suffer
in stochastic environments where it fails to separate epistemic from aleatoric uncertainty
(Burda et al., 2019b). Second, we propose RL-ALP, which leverages information gain
over the prediction error (a form of Learning Progress) (Oudeyer & Kaplan, 2007; Lopes
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et al., 2012; Schmidhuber, 1991a) and rewards transitions on which the forward model
improves. In particular, we use the absolute value of Learning Progress, which tracks
both progress and forgetting in the forward model (Oudeyer & Kaplan, 2007; Baranes &
Oudeyer, 2009):

Tap = | log PSt(s’\s,a, H, ;) —log PSt(s’\s,a, H,)| (4.2)

Finally, directly tracking Learning Progress at the transition level often leads to noisy
estimations. We also propose RL-ALPEXP, a variant of RL-ALP which partitions the
transition space into subspaces and computes ALP over each subspace, stabilizing the
estimations. While existing works studied how to automatically infer such partitions
(Baranes & Oudeyer, 2013), we here rely on hand-designed ones, which correspond to the
partitions used by oracles. Further details are provided in Appendix C.1.

4.2.2 Experiments

Experimental setup

Environment — To evaluate WorldLLM’s efficiency, we use the Playground-Text

You see the water, the carrot
seeds, the baby cow.

/ You are next to the baby cow.

[;% In your inventory, there is
.g% nothing.
4%

\ Go to the

Inventory

Scene

Playground-Text

a)

Figure 4.4: Our experimental setup. We use the Playground-Text environ-
ment that features objects the agent can interact with, along with textual
observations and actions (a). We focus on 4 object types from Playground-
Text: Water, Plants, Small Herbivores, and Big Herbivores. We show in (b)
the technology tree for combining objects.

environment introduced in Appendix D.1, a textual environment which produces textual
observations and receives textual commands. This environment generates a room that
contains multiple objects the agent can interact with by grasping or releasing them. The
agent can combine two objects, if an interaction is possible, by releasing one onto the other,
as illustrated in Figure 4.4 b. For instance, releasing water on a carrot seed transforms
them into grown carrot. In our experiments, we only consider 4 types of objects: Water,
Plants (seed or grown) that require water to grow, Small Herbivores (baby or grown)
that require a grown plant to grow, and Big Herbivores (baby or grown) that require 2
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grown plants to grow. We evaluate WorldLLM’s ability to discover, predict, and explain
how to grow Plants, Small Herbivores, and Big Herbivores. We provide more details on
the environment in Appendix C.1. For analysis, we gather the possible transitions into 6
different types: Standing when moving on an object, Holding 1 when grasping an object,
Holding 2 when grasping two objects at the same time, Grow Plant when releasing water
on a seed, Grow S. Herbivore when releasing a grown plant on a baby small herbivore
and Grow B. Herbivore when releasing two grown plants on a baby big herbivore. These
types are the ones used by RL-ALPEXP.

Optimization — We use Phi-3-mini-4k-Instruct! for both the Statistician and the
Scientist. For our Experimenter, we either use one of our hard-coded oracles or an RL
agent. Regarding oracles, O-Ideal collects transitions that match the distribution of the
above test set. O-Hardest performs the optimal policy to grow the Small Herbivore and
the Big Herbivore accessible. O-Curriculum plays the optimal policy to grow a Plant up
to 133 iterations, then plays the optimal policy to grow the accessible Small Herbivore
up to 266 iterations, and finally grows the Small Herbivore and the Big Herbivore until
the end. See Appendix C.2.3 for more details on the oracles. Concerning the RL-based
Experimenters, while it would appear natural to use the LLM already leveraged in the
Statistician and Scientist as the policy (e.g., with GLAM), we propose a simpler setup to
focus on world modeling abilities. We use a Multi-Layer Perceptron with 2 hidden layers
of 64 units as the policy, which uses a symbolic representation of Playground-Text’s state
as observation. In all experiments below, unless specified otherwise, we use 8 different
random seeds. For each seed, we perform 400 iterations of the framework (i.e., T') where
150 transitions are collected per iteration and n.,s = 5 steps of the Metropolis algorithm
are performed by the Scientist at each iteration. When the Experimenter is an RL
agent, we collect 3600 transitions per iteration to train it and use PPO to update the
policy, while only keeping the last 150 transitions for the Scientist to match the oracles’
hyperparameters. Our test set D;.,; is composed of 120 Standing, 20 Holding 1, 7 Holding
2, 12 Grow Plant, 6 Grow S. Herbivore and 3 Grow B. Herbivore.

WorldLLM with an oracle Experimenter

We initiate the experiments by examining the performance of WorldLLM when using
our oracles as Experimenters. In Figure 4.5, we show the evolution of log-likelihoods
outputted by the Statistician using the last accepted set of hypotheses H; through-
out WorldLLMs’ iterations when using different oracles as Experimenters. These log-
likelihoods are computed on the test set and averaged over transition types (and seeds).

One can observe that, regardless of the oracle used or transition type, giving the
Statistician hypotheses always improves its performance compared to when no hypotheses
are given (i.e., the initial point of each curve). When comparing the oracles, one can
observe that the data collection strategy of O-Ideal strongly influences WorldLLM’s
abilities at producing efficient hypotheses. Indeed, using the same distribution as the one
we perform evaluation on, O-Ideal achieves the best overall performance. On the opposite,

"https: //huggingface.co/microsoft /Phi-3-mini-4k-instruct
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Figure 4.5: Evolution of log-likelihoods computed by the Statistician (us-
ing the Scientist’s last accepted hypotheses) on the test set throughout
WorldLLM’s iterations when using different oracles as Experimenters. We
average per transition type over 8 random seeds with the standard deviation
represented by the error bars. We show at iteration 0 the log-likelihood from
the Statistician without any hypotheses given.

O-Random obtains the poorest performance on complex transitions (i.e., growing an
object) while being the best method on Standing transitions. This can easily be explained
by the fact that moving actions are predominant in the action space. O-Hardest did not
lead to strong performance, highlighting the need of diversity in collected transitions for
the Scientist. Finally, O-Curriculum obtains results that are on par with those of O-Ideal.
Results from Appendix C.4.2 indicate that O-Curriculum particularly helps the Scientist
generate improved hypotheses.

Overall, these initial experiments demonstrate that WorldLLM is able to produce
hypotheses that improve the predictive capabilities of the Statistician’s LLM. Moreover,
the different performance obtained by our oracles highlighted the importance of 1) diversity
in the collected transitions and 2) a developmental collection strategy allowing the Scientist
to progressively update the hypotheses.

WorldLLM with a curiosity-driven RL agent as
Experimenter

We now move to curiosity-driven RL agents as Experimenters. Compared to the hard
coded policies, we rely instead on one of our three intrinsic reward signals (RL-ALPEXP,
RL-LogP, and RL-ALP), to collect transitions that drive the Scientist towards generating
efficient hypotheses.

As in the previous section, we analyze the evolution of the Statistician’s log-likelihoods
over the test set. In order to ease the comparison of our three RL-based Experimenters to
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oracles, we introduce a coverage metric as the area under the evolution of log-likelihoods’
curve of each method. We normalize this area using the area between the Statistician’s
log-likelihood without any hypotheses and the best performance achievable (i.e., 0). The

T
log ps (Dtest’Ht)
area = 1 — dt. 4.3

/0' 10g Pst (Dtest|{®})T ( )

complete formula is

The best performing method possible is expected to be very close to 1 while an
inept method’s result will be near 0. A method whose result is below 0 means that the
hypotheses degrade the initial performance of the Statistician.

Methods Standing Holding 1 Holding 2 Grow Plant Grow S.H. Grow B.H.
O-Random 0.97 £+ 0.01 0.45 £+ 0.16 0.40 £+ 0.15 0.34 £ 0.24 0.44 £ 0.16 0.40 £ 0.17
O-Ideal 0.92 £+ 0.03 0.72 £ 0.12 0.50 £ 0.06 0.81 £+ 0.06 0.77 + 0.06 0.74 + 0.04
O-Curriculum 0.79 £ 0.15 0.48 £ 0.25 0.31 £ 0.15 0.67 £ 0.15 0.63 £ 0.13 0.60 £ 0.14
O-Hardest 0.74 £ 0.13 0.48 £+ 0.20 0.39 £ 0.16 0.52 £ 0.21 0.57 £ 0.18 0.56 £ 0.18

RL-ALPEXP 0.95 £ 0.02 0.44 £ 0.16 0.40 £ 0.14 0.42 £ 0.25 0.52 £ 0.19 0.49 £ 0.19

RL-LogP 0.93 £ 0.01 0.52 £ 0.07 0.53 + 0.07 0.62 £ 0.09 0.61 £ 0.07 0.60 £ 0.07
RL-ALP 0.98 £+ 0.01 0.18 £+ 0.08 0.17 £ 0.06 -0.07 £+ 0.05 0.16 £ 0.04 0.08 £ 0.07

Table 4.1: This table presents the normalized area under the training curve
for each algorithm and transition type. The normalization is performed by
dividing the computed area by the area formed by the initial log-likelihoods,
i.e., obtained without using hypotheses.

From the results shown in Table 4.1, one can observe that RL-ALPEXP is able
to leverage its environment knowledge to reach performance significantly better than
O-Random but remaining worse than O-Ideal. When given no expert knowledge, RL-ALP
achieves poor performance while RL-LogP obtains results close to or even better than
oracle baselines.

To better understand the effect of the RL-based Experimenters on the Statistician’s
predictions, we studied the evolving distribution of collected transitions. We grouped
Holding 1 and Holding 2 for simplicity and ignored Standing transitions, which are
predominant by nature. We show these results in Figure 4.6.

They show that RL-LogP manages to explore the environment and cover the whole
transition space. The resulting collected distribution is near O-Hardest’s one (which is
shown in dashed lines). This performance is notably explained by the syntax used by
Playground-Text for observations and actions that make complex transitions naturally
harder to predict for an LLM (e.g., moving to a Big Herbivore involves only this entity
whereas growing a Big Herbivore implies an action where two Plants are released on
a baby Big Herbivore). This natural ordering appears in the rewards obtained by the
RL policy and favors complex transitions. RL-ALPEXP, which does not leverage such a
reward ordering, progressively converges to collecting more complex transitions. When
looking at RL-ALP, most of the collected transitions are Standing ones. As we have
seen in the previous section, the diversity of the transitions given to the Scientist is
key in WorldLLM. Consequently, the hypotheses produced with RL-ALP focus solely
on explaining Standing transitions. A more detailed analysis of why RL-ALP failed is
available in Appendix C.4.4.
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Figure 4.6: Proportion of collected transitions for RL-ALPEXP (left), RL-
LogP (middle), and RL-ALP (right). The colored dashed lines correspond
to the amount of transitions collected by O-Hardest.

This section’s results show that WorldLLM successfully improves the LLM’s forward
modeling abilities when using curiosity-driven RL-based Experimenters. Moreover, we
show that rewarding Experimenters for collecting transitions that help refine the hy-
potheses not only leads to efficient hypotheses but also leads to policies that solve our
environment’s full technology tree.

Evaluating the produced world model

We now focus on evaluating the usefulness of the produced world model (i.e., the
Statistician equipped with the last accepted hypotheses). While previous sections indicate
that WorldLLM succeeds in increasing the likelihood of the observed next states, these
results do not guarantee that the observed next states receive the highest likelihood
compared to other possible next states. We thus examine our LLM-based world model’s
capacity to correctly predict (i.e., generate) the next state on our test. In particular, for
each state-action pair in D;.,;, we used our Statistician’s LLM and constrained decoding to
only generate the valid next states, given the current state, in Playground-Text. We then
report in Table 4.2 the percentage of next states that belonged to the top-3 generated

sequences.
Methods Standing Holding 1 Holding 2 Grow Plant Grow S.H. Grow B.H.
No Hypo. 0.82 £ 0.00 1.00 + 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
O-Random 1.00 + 0.00 0.48 £+ 0.26 0.07 £ 0.19 0.18 £ 0.31 0.00 £ 0.00 0.04 £ 0.11
O-Ideal 1.00 + 0.00 0.94 £+ 0.15 0.00 £+ 0.00 0.94 + 0.17 0.25 + 0.26 0.46 + 0.37
O-Curriculum  1.00 £+ 0.00 0.88 + 0.31 0.00 £+ 0.00 0.85 + 0.28 0.60 + 0.41 0.54 + 0.44
O-Hardest 1.00 + 0.00 0.86 + 0.21 0.11 £+ 0.28 0.29 £+ 0.34 0.27 £ 0.37 0.21 £ 0.37

RL-ALPEXP 1.00 + 0.00 0.71 £+ 0.29 0.34 + 0.36 0.40 £ 0.43 0.02 £ 0.06 0.08 £+ 0.14

RL-LogP 1.00 £+ 0.00 0.67 £ 0.30 0.34 £ 0.25 0.74 £ 0.32 0.02 £ 0.06 0.29 £ 0.42
RL-ALP 1.00 £ 0.00 0.20 £+ 0.26 0.00 £ 0.00 0.03 £ 0.08 0.00 £ 0.00 0.00 £ 0.00

Table 4.2: Top 3 performance of Constrained Decoding for each algorithm
by transition type. We also report the performance without any hypotheses
given (No Hypo.).

The results show that no method performs best on all transition types. However,
similarly to what was observed in previous sections, O-Ideal, O-Curriculum, RL-ALPEXP
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and RL-LogP appear to be the best performing Experimenters. More importantly, these
results show a significant improvement over the performance without any hypotheses.

Generating hypotheses with WorldLLM vs
fine-tuning

WorldLLM improves an LLM’s forward modeling abilities by providing it natural
language hypotheses about the world. In this section, we study how our approach
compares to a more classic gradient-based approach where the LLM is directly fine-tuned
on collected transitions. In addition to avoiding gradient computation through the LLM
and being human interpretable, the theories produced by WorldLLM are expected to
better generalize to changes in the environment.

We use the transitions collected by RL-LogP and fine-tune our Statistician’s LLM
on them using a causal language modeling objective (i.e., we maximize the likelihood
of the next state’s tokens given the state-action pair). We name this new approach
F-LogP. When evaluated on its top-3 constrained decoding accuracy over the test set as
in Section 4.2.2, F-LogP obtains perfect results (i.e., accuracy of 1) over all transition
types. In the following sections, we study the generalization abilities of both methods
and provide a deeper analysis of their impact on log-likelihoods.

Generalization to changes in the environment — We now assess whether using
natural language hypotheses in the prompt produces better generalization abilities for
the LLM-based world model than fine-tuning it on collected transitions. For this, we
create a generalization environment in which the syntax of observations is changed (see
Figure C.5). We use this new environment to report the top-3 constrained decoding
accuracy on our test set, as in previous sections.

Methods Standing Holding 1 Holding 2 Grow Plant Grow S.H. Grow B.H.
No Hypo. 0.28 £+ 0.00 0.85 + 0.00 0.00 + 0.00 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00
O-Random 0.69 £+ 0.16 0.45 £+ 0.26 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
O-Ideal 0.73 + 0.23 0.46 + 0.19 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00
O-Hardest 0.33 + 0.33 0.71 + 0.33 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00

O-Curriculum 0.46 + 0.34 0.72 £ 0.29 0.00 £ 0.00 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00

RL-ALPEXP 0.65 + 0.16 0.42 £ 0.30 0.00 £ 0.00 0.00 & 0.00 0.00 £ 0.00 0.00 £ 0.00

RL-LogP 0.43 £ 0.16 0.30 £+ 0.23 0.00 £ 0.00 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00
RL-ALP 0.76 + 0.18 0.61 £+ 0.31 0.00 £ 0.00 0.00 £ 0.00 0.00 £+ 0.00 0.00 £ 0.00
F-LogP 0.88 + 0.17 0.24 £+ 0.25 0.00 £ 0.00 0.07 £ 0.13 0.21 £ 0.32 0.67 + 0.44

Table 4.3: Top 3 performance on Constrained Decoding for each algorithm
by transition type on the test set using the generalization environment. We
also report the performance without any hypotheses given (No Hypo.).

Results from Table 4.3 show an important deterioration of the performance for all
methods. F-LogP manages to maintain a non-zero accuracy on complex transition types
while WorldLLM-based world models do not perform better than the Statistician without
any hypotheses. These results hint that WorldLLM may struggle in finding abstract

hypotheses that generalize. The next section provides additional insights on these results.
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Effect on log-likelihoods — We now propose to study how both methods affect
the Statistician’s log-likelihoods. We show in Figure 4.7 the log-likelihoods (averaged by
transition type) produced by the Statistician when facing an instance of a Grow Plant
transition.

Looking at results when using the classic environment (a), WorldLLM increases the log-
likelihood of all the possible transitions (no matter the Experimenter) while maintaining
the correct transition more likely. In comparison, the causal language modeling objective
used for F-LogP increases the log-likelihood of the correct transition while significantly
decreasing the log-likelihood of all the other transitions. These results illustrate the
difference in the two optimization processes: while fine-tuning aims to increase the
distance in log-likelihoods between the correct transition and the other ones, World LLM
focuses on increasing the log-likelihood of the correct transition, regardless of the others.

When focusing on performance with the generalization environment, WorldLLM leads
to very few changes compared to when no hypotheses are given. On its side, F-LogP
produces very low log-likelihoods for all transitions and keeps the correct one slightly
above the others. Overall, these results show that both approaches generalize poorly.

One explanation for WorldLLM’s poor generalization performance lies in the hypothe-
ses produced. We provided samples in Appendix C.4.3 which show that our Scientist
notably used examples of transitions in the hypotheses (even though some hypotheses
did mention abstract categories or even mentioned objects not in our environment).
Such examples no longer align with the generalization environment’s syntax. Multiple
explanations can be given for this. First, our current experiments rely on a Scientist’s
LLM with limited capabilities. Second, while our objective in 4.1 minimizes the number
of hypotheses, the current implementation of WorldLLM only focuses on maximizing the
Statistician’s log-likelihood. We argue that favoring short hypotheses could help abstract
theories emerge. We leave these investigations for future work.

Log Likelihood
Log Likelihood

=== No hypotheses
= O-ldeal = O-ldeal
= RL-ALPEXP = RL-ALPEXP

== No hypotheses

== RL-LogP === RL-LogP
= F-LogP == F-LogP

standing  Holding1  Holding2  Grow Plant ~ GrowS.H.  Grow B.H. true standing  Holding1  Holding2  GrowPlant ~ GrowS.H.  Grow B.H. true
Transition Type Transition Type

(a) No changes to the environment. (b) Generalization environment.
Figure 4.7: Log-likelihoods (averaged by transition type) produced by the
Statistician when facing an instance of a Grow Plant transition. We show

how using the generalization environment from Section 4.2.2 affects the
log-likelihoods (b).

4.2.3 Related work



Discussion

Building forward models

Learning a forward model has been used as an intrinsic reward to foster RL policies’
exploration (Schmidhuber, 1991b; Pathak et al., 2017; Burda et al., 2019a; Oudeyer &
Kaplan, 2007). WorldLLM employs a similar curiosity-driven scheme where our RL-based
Experimenters use reward signals from prior work to promote exploration and collect
transitions that help improve the forward model. However, our method differs in the
way the model is improved: instead of using a gradient-based approach to fine-tune the
LLM-based forward model, as done in (Xiang et al., 2023), WorldLLM searches for natural
language theories that improve the forward model when given in the prompt. While
recent work studied how a forward model could leverage external textual information
such as a manual explaining the environment (Zhang et al., 2024a; Dainese et al., 2023),
our approach iteratively generates and refines its own explanations.

Inductive reasoning for world modeling

We discussed in Section 4.1 the importance of intuitive theories in shaping one’s
representations about the world. Building on this, the literature of theory-based RL
has been advocating for augmenting artificial agents with inductive reasoning (Tsividis
et al., 2021). In particular, (Tsividis et al., 2021; Tang et al., 2024; Li et al., 2024)
proposed approaches based on LLMs that generate programs representing the theories
about an environment’s dynamics. The use of programs allowed the authors to execute
and compare how the proposed theories match empirical evidence. Parallel to this,
(Piriyakulkij et al., 2024; Wang et al., 2024b) proposed to generate theories using natural
language. While the former constrained the generated theories to programs that can be
easily evaluated in their environment, the latter used the generated theories to condition
a program generator to simulate the environment’s dynamics. WorldLLM also builds on
the theory-based RL literature and closely relates to (Piriyakulkij et al., 2024). Notably,
WorldLLM also leverages Bayesian inference with an LLM as the proposal distribution to
generate the theories. However, the major difference lies in how the produced theories
are used: while (Piriyakulkij et al., 2024) constrain the format of theories such that they
can be directly tested in the environment, our work focuses on giving these theories in
another LLM’s prompt to improve its forward modeling capabilities. In other words,
our work strongly differs in its perspective of producing theories that improve our LLM’s
world modeling abilities instead of producing correct theories. Nonetheless, the Bayesian
inference framework we used in our Scientist is largely inspired by (Piriyakulkij et al.,
2024). Both our work and theirs also consider an active learning paradigm to choose
which experiments to perform for theories’ refinement. While their approach computes
exact Information Gain of all possible experiments, ours relies on curiosity-driven RL
agents and Information Gain approximates as rewards to overcome the intractability of
exact Information Gain in most environments.

4.3 Discussion

In this chapter, we explored the predictive and modeling dimensions of functional
grounding in LLMs. Drawing inspiration from cognitive development, we highlighted
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how children iteratively refine intuitive theories to make sense of their environment.
We connected these insights to the field of model-based RL, particularly approaches
that reward exploration based on forward model errors—mirroring how humans seek
informative experiences to update their mental models.

Building on this foundation, we introduced WorldLLM, a framework for functionally
grounding world modeling abilities in LLMs. WorldLLM generates natural language
hypotheses—interpretable, theory-like statements—which condition the LLM when pre-
dicting state-action outcomes. This approach enables world modeling without expensive
fine-tuning of the LLM itself and avoids the need for a handcrafted theory space. Our
experiments demonstrated that the adversarial dynamic between a Scientist (hypothesis
generator) and simple curiosity-driven Experimenters (data collectors) supports broad
exploration and the discovery of environment dynamics.

Despite promising results, our initial implementation of WorldLLM presents several
limitations. First, the Playground-Text environment is structurally simple, and the natural
ordering created by the most challenging transitions being longer and harder to predict is
not expected in more complex environments—potentially reducing the effectiveness of
RL-LogP. Evaluating WorldLLM in more complex environments is therefore a critical
direction for future work (Ying et al., 2025).

Second, our current Experimenters use lightweight neural networks and symbolic
inputs. A more compelling alternative would be to integrate LLM-based Experimenters,
possibly unifying all WorldLLM components with a single GLAM-equipped LLM that
learns both to control and to improve its forward model via online RL. Furthermore,
our experiments only used one LLM model, which showed limitations in the Scientist
role—particularly in generating abstract, high-level hypotheses.

Yet, as we argued in Section 4.1, abstract reasoning is a key characteristic of human
theories. Its emergence in LLMs may require more than scaling the base model. A
key advantage of Bayesian inference in this context is the ability to incorporate priors,
which constrain the theory space. While a length-based prior might encourage abstract
hypotheses, we believe richer priors—such as “error maps” that represent structured
patterns of predictive failure, as described by Schulz (2012)—may be necessary to better
replicate human-like theory refinement.

Additionally, our current Metropolis-based approach for updating hypotheses only
considers the most recent transitions, which can lead to forgetting, especially with non-
stationary Experimenters. This was primarily motivated by practical constraints: the
LLM’s limited context window and the cost of evaluating likelihoods on large transition
sets. These issues could be mitigated by storing past transitions in a replay buffer or
employing more sophisticated Bayesian inference methods (e.g., particle filters), which
would also allow tracking multiple particles to avoid local optima—a current limitation
evidenced in Appendix C.4.

Finally, our exploration strategy relied solely on simple curiosity-driven signals focused
on poorly predicted transitions. As discussed in Chapter 2, other intrinsic motivation
mechanisms have been studied in both humans and artificial agents. A particularly
important one is autotelic learning, where learners generate, select, and attempt to
master self-defined goals (Steels, 2004; Colas et al., 2022b). In the next chapter, we
extend our investigation of curiosity-driven exploration to more complex and open-ended
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environments. In particular, we explore how functional grounding in such settings can be
supported by key mechanisms underlying autotelic learning—such as scaffolding, hindsight
relabeling, and metacognitive monitoring.



Chapter 5

Towards functional grounding in complex
goal spaces
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In Section 2.2.3, we discussed how curiosity-driven learning plays a central role in
human cognitive development. In particular, humans are open-ended learners, continuously
exploring and acquiring new skills throughout their lives. Crucially, humans are autotelic
learners—intrinsically motivated to represent, invent, select, and pursue their own goals
(Steels, 2004; Colas et al., 2022a). To navigate a potentially infinite space of goals—without
the time or capacity to exhaustively explore it—they rely on intrinsic motivation signals
(Baldassarre & Mirolli, 2013; Gottlieb & Oudeyer, 2018). In this chapter, we argue that
functionally grounding LLMs presents a similar challenge: there exists a vast space of
possible skills that an LLM could acquire through functional grounding, yet time and
interactions are inherently limited.
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Importantly, autotelic learning in humans is not purely an individual endeavor. Devel-
opmental psychology, beginning with Lev Vygotsky and followed by others, emphasizes
the role of social guidance—especially from caregivers—in shaping cognitive and linguistic
development (Vygotsky, 1962). This guidance takes various forms. For instance, adults
often provide linguistic descriptions of events, which help children focus attention and
facilitate language acquisition (Smith & Gasser, 2005; Golinkoff et al., 2015). Drawing
inspiration from this, Colas et al. (2020) proposed an autotelic RL agent that uses lan-
guage to invent its own goals and learns to evaluate goal success through descriptions
provided by a social partner. By combining this social feedback with hindsight relabeling
and off-policy RL, they showed that the agent could autonomously learn diverse skills
and generalize effectively—without relying on any extrinsic reward.

We begin this chapter’s contributions by extending the functional grounding framework
to environments involving social interaction. Specifically, we consider scenarios in which
a social partner provides behavioral descriptions to the LLM agent. In Section 5.1, we
introduce a new method—SAC-GLAM—which incorporates hindsight relabeling and
off-policy RL into the GLAM framework. This work constitutes an important contribution
to designing autotelic LLM agents able to leverage social interactions to efficiently improve
their functional competence. Additionally, by providing an in-depth analysis of SAC’s
integration in LLM agents, we also contribute to improving the efficiency of RL-based
fine-tuning of LLMs.

Another important form of guidance is what has been described as scaffolding by
Bruner (1985); Wood et al. (1976): caregivers tailor and adapt tasks based on a child’s
current abilities. This plays a major role as it constrains the learning opportunities for
children who face a rich and possibly infinite environment to explore. Effectively identifying
such tasks requires the caregiver to estimate the child’s current competence—that is, to
assess what the child knows and does not know. These insights have inspired various works
in ML aimed at organizing the learning experiences of artificial agents. While curricula
can be hand-crafted by human experts (Bengio et al., 2009), the field of automatic
curriculum learning (ACL) focuses on designing teacher algorithms that autonomously
sequence learning tasks for an artificial learner. Although ACL has shown mixed success
in supervised learning contexts, it has proven particularly effective in RL, where adjusting
the difficulty of tasks presented to an agent is crucial for efficient policy discovery (Portelas
et al., 2020b; Narvekar et al., 2020). In Appendix H, I provide a benchmark of ACL
methods used in RL contexts, assessing their robustness to various task spaces (e.g.,
mostly infeasible or with a rugged difficulty landscape). These methods notably differ in
the motivation signal they use to estimate which goals are most beneficial for the learner
at a given time (e.g., Learning Progress or intermediate difficulty).

But beyond external guidance, humans also develop internal mechanisms for task
prioritization. As discussed earlier and in Chapter 2, such mechanisms are particularly
crucial in autotelic learning, where individuals must navigate large and complex goal
spaces without predefined curricula. A key component of effective goal selection is the
emergence of metacognitive abilities—allowing learners to monitor their own competence
and prioritize tasks with the highest learning potential (Ten et al., 2021). In Section 5.2,
we extend this idea by exploring how to endow LLMs with metacognitive monitoring
abilities—specifically, the ability to estimate what they already know versus what they
have yet to learn. We investigate how LLM agents can develop competence estimation
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mechanisms over vast task spaces and use these estimates to autonomously prioritize
their learning trajectories. Our proposed method, MAGELLAN, enables LLM agents to
track Learning Progress across large language-defined task spaces by leveraging semantic
relationships between tasks. Experiments show that MAGELLAN effectively prioritizes
tasks and that, through metacognitive estimation, it shapes the LLM’s internal task
representations to better reflect the structure of the external environment.

This chapter concludes by addressing scenarios in which tasks exceed the LLM’s
capabilities but assistance (e.g., calling another LLM) is available. In particular, we
demonstrate that augmenting LLMs’ metacognitive skills is not only useful for scaffolding
their training but also enables LLMs to track when it is best to rely on external help.
Modeling this as a multi-objective bandit problem in which the LLM must balance
maximizing task performance with minimizing the cost of external help, we show that
LLMs can learns an optimal strategy for this trade-off through online interaction alone.

Collaborations and scientific output — Sections 5.1 and 5.2 stem from the same
Master’s internship conducted during the summer of 2024 with Loris Gaven, under the
co-supervision of Thomas Carta and myself. The initial goal of the internship was to
transition a GLAM-based LLM agent toward an autotelic agent by integrating off-policy
RL and hindsight relabelling into GLAM. Loris, Thomas, and I jointly led the project
and were involved in all scientific and technical decisions throughout the internship, with
Loris handling the implementation and execution of the experiments. This first phase of
the work resulted in a workshop paper (presented in Section 5.1): Loris Gaven, Clément
Romac, Thomas Carta, Sylvain Lamprier, Olivier Sigaud, Pierre-Yves Oudeyer. 2024.
SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight
Relabeling. Intrinsically Motivated Open-ended Learning (IMOL) Workshop, Neural
Information Processing Systems (NeurIPS). To support our investigation of hindsight
relabelling, we designed an environment featuring a complex language-specified goal
space. However, early experiments using uniform random goal selection quickly revealed
limitations, prompting us to explore goal prioritization strategies based on automatic
curriculum learning. This second phase extended into late 2024 and culminated in
a conference paper, presented in Section 5.2: Loris Gaven, Thomas Carta, Clément
Romac, Cédric Colas, Sylvain Lamprier, Olivier Sigaud, Pierre-Yves Oudeyer. 2025.
MAGELLAN: Metacognitive predictions of learning progress guide autotelic LLM agents in
large goal spaces, Proceedings of the 42nd International Conference on Machine Learning
(ICML). Vol. 267. In parallel, beginning in late 2023, I initiated a project applying
GLAM-style fine-tuning to help LLMs discover tool-use strategies. After several iterations
and redirections, this work matured into the contribution presented in Section 5.3, which
I carried out as sole first author. The project’s direction was notably shaped by my
discussions with Thomas Carta, Loris Gaven, Cédric Colas, as well as Nicolas Yax. Nicolas
played a key role in shaping both the project presented in Section 5.3 and MAGELLAN,
thanks to his insightful feedback on metacognition for LLMs.
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5.1 Social interactions for autotelic functional grounding:
hindsight relabeling and off-policy RL with SAC-GLAM

While Chapter 3 demonstrated how GLAM can functionally ground LLMs through
online interaction, scaling this process to support the open-ended acquisition of functional
competence across infinite task spaces requires granting LLM agents greater auton-
omy—specifically, the ability to freely explore their environment and define their own
goals (Colas et al., 2022b). As discussed in Chapter 2, language—and, more recently,
LLMs—has played a central role in the design of such agents. For example, LLMs have
been used to generate novel goals (Colas et al., 2020; Wang et al., 2023a; Zhang et al.,
2024b; Colas et al., 2022a) or to produce task-specific reward functions (Colas et al.,
2020; Fan et al., 2022; Du et al., 2023). However, the construction of fully autotelic LLM
agents remains an underexplored challenge. This chapter seeks to address that gap by
adapting mechanisms from classic autotelic agents—such as those introduced in (Colas
et al., 2020)—to the context of LLMs.

In particular, autotelic architectures usually involve experience replay and hindsight
relabeling to best utilize all trajectories, even unsuccessful ones, which can be predominant
when agents set their own goals. However, most current approaches to fine-tune LLM
agents with RL rely on on-policy algorithms that cannot handle experience replay and
trajectory relabeling mechanisms. While a handful of attempts (e.g., (Wen et al., 2024a;
Putta et al., 2024)) to use off-policy RL on LLMs exist, they consider token-level actions
(better suited for text generation tasks) and complex architectures that balance token-
level actions and environment-level actions (usually sequences of tokens). As a step
towards autotelic LLM agents, this work introduces a version of Soft Actor-Critic (SAC)
(Haarnoja et al., 2018) explicitly designed for LLMs as RL agents combining the simplicity
of prior on-policy methods focusing on environment-level actions (e.g., GLAM) and the
advantages of off-policy learning. We then extend it with Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017) and show our new method (SAC-GLAM) exhibits
higher sample efficiency than GLAM (called PPO-GLAM in our experiments) in a classic
multi-goal environment while staying on par in time efficiency in spite of the stability
and efficiency challenges of using an actor-critic approach with a pre-trained LLM-based
policy and a randomly initialized critic.

5.1.1 SAC-GLAM

We consider a textual RL setting where, given a language vocabulary V, the environ-
ment returns an observation o € VY and a reward r € R after an action a € A C VM (i.e.,
actions are sequences of tokens). The task or goal description g € G C VX conditions
the reward. This environment can be modeled as a goal-augmented partially observable
Markov Decision Process (POMDP) M = (S,V, A, T,R,G,U,~), where S is the state
space, A is the action space, G is the goal space, 7 : S x A — S is the transition function,
R : Sx AxG — R is the goal-conditioned reward function, U : S — V¥ is the observation
function that maps a state to a textual description, and « is the discount factor.

In such settings, our previous empirical contributions showed that PPO shines for its
efficiency and simplicity when fine-tuning stochastic pre-trained policies such as LLM
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agents. However, on-policy RL approaches such as PPO cannot theoretically leverage
HER, which, by relabeling trajectories, introduces off-policy transitions. We propose in
the sections below an off-policy alternative to PPO that keeps GLAM’s simplicity in
how the LLM is used as a stochastic policy over discrete environment-level actions (i.e.,
sequences of tokens).
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Figure 5.1: The SAC-GLAM method. (a) depicts the agent’s architec-
ture when an encoder-decoder LLM is used: the actor computes an action
probability as the probability computed by the LLM of the action’s tokens
to follow the observation and goal concatenated in the prompt p, while
the critic computes the Q-value for each action a and the prompt p with
an MLP attached to the decoder’s last hidden state. (b) illustrates the
agent-environment interaction, where trajectories are generated and added
to the replay buffer. We used an environment where a social partner relabels
these trajectories with hindsight goals.

Soft Actor Critic with an LLM actor

We adapt the discrete version of SAC (Christodoulou, 2019) to our stochastic LLM-
based policy. We first follow GLAM’s approach to obtaining a stochastic policy with an
LLM by computing the probability of each action a; € A from our environment as the
probability of its token sequence a; = {wy, ws, ..., w4, } (with w; € V) to follow a prompt
containing both o and g:

lail

LP.ra(ailo, g) :ZIOgPLLM(wj|0,g,w<j). (5.1)

Jj=0

Subsequently, a softmax function is applied to generate a probability distribution over
all possible actions and obtain our stochastic policy:

eLPLLM (ailo,g)

m(ailo,g) = S o eLPrram(ajlo.g) (5.2)
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Then, we follow SAC and simultaneously learn both this policy and a Q-function,
which we implement as an MLP added on top of the final decoder block of our LLM (as
in GLAM).

Pre-trained policy and randomly initialized critic

When running SAC with a pre-trained LLM as the policy, several unique challenges
arise. In SAC, the actor’s updates rely on feedback from the critic. While poor estimates
from a randomly initialized critic may not significantly impact a randomly initialized
policy, our situation is different. We aim to protect the pre-trained LLM actor from
harmful updates that could degrade its performance.

For this, we introduce a warm-up period where only the critic is trained. To make
this warmup period as short as possible, we speed up the critic’s convergence (1) by
backpropagating gradients through both the MLP and the LLM (even though it might
affect the actor) and (2) by having a critic with a single head that outputs the Q-value
of a state-action pair by concatenating them in the prompt. While the latter requires
|A| forward passes through the LLM and MLP to obtain all the actions’ Q-value, it
significantly improves convergence.

Our experiments from Section 5.1.2 also use n-step returns with a target expressed as:

n—1
Yy = ZVZTI%H’ + ’YnEaH,,LNTr(-\OHV,L),g [Q(St+na at+n) - Blogﬂ-(aﬂrn | Ot+nvg)] . (53)

i=0
In the standard SAC algorithm, a single-step return is used, which corresponds to setting
n = 1. Using n-step returns reduces the reliance on bootstrapping by accumulating

rewards over multiple steps before bootstrapping, often leading to faster critic convergence.

However, n-step returns introduce the risk of older transitions becoming highly off-policy,
as intermediate rewards and actions depend on the policy in place when the transitions were
collected. To mitigate this, we reduce the size of our replay buffer (see hyperparameters
in Appendix D.4).

We provide a study of these architectural choices in our ablations in Section 5.1.2.

Hindsight Experience Replay

We augment our SAC-GLAM agent with HER, enabling the algorithm to learn from
failed attempts by relabeling portions of the failed trajectories with accidentally reached
goals. At the end of an episode, the trajectory with its initial goal and the relabeled
sections of the trajectory are added to the replay buffer. We use the future strategy
proposed in Andrychowicz et al. (2017) (i.e., a trajectory is relabeled with every achieved
goal and all these relabeled trajectories are added to the replay buffer). When training,
we randomly sample a batch of transitions from this buffer such that the batch contains
50% of relabeled transitions. This is inspired by how Colas et al. (2020) sampled their
batch, but we show in Appendix D.3 that this only has little impact in our case.
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5.1.2 Experiments

We evaluated our method in the Playground-text environment, a text-based adaptation
(goals, observations, and actions are represented as text) of the original Playground
environment. This environment was initially introduced by Colas et al. (2020) to study
autotelic RL agents that interact with a social partner describing goals reached during a
trajectory. In this environment, the agent receives a textual goal and must interact with
different objects (plants, animals, food, and water) to complete the task. As this work
focuses on augmenting LLM agents with HER and SAC, we do not study how such agents
can learn a reward function based on the partner’s feedback. Consequently, we define
an extrinsic reward where the agent receives 1 if the task is completed and 0 otherwise.
Moreover, in the original Playground environment, the agent moves along the x and y
axes to reach objects. In the text-based version, we simplified this by introducing moving
actions: "Go to {object}", which directly moves the agent to the selected object. The
environment features two types of tasks: "Grasp {object}" and "Grow {object}". Animals
can be grown using either water or food, while plants can only be grown using water.
In Playground-Text, we also introduce sequential tasks, where the agent must complete
two tasks in the correct order, significantly expanding the task space to 8,470 tasks. A
detailed description of the environment is given in Appendix D.1.

We compared SAC-GLAM—with and without HER—to PPO-GLAM using Flan-T5
250M (Rae et al., 2022). As shown in Figure 5.2, SAC-GLAM alone achieves higher sample
efficiency than PPO-GLAM for a fixed budget of 400K environment steps, although it
lags behind in time efficiency. This outcome stems from the nature of off-policy methods
like SAC, which can sample large batches from the replay buffer, exceeding the number of
new environment steps since the last update. While this typically yields better sample effi-
ciency (see ablations below), it also incurs higher computational costs—particularly when
computing gradients for large models such as LLMs. Consequently, SAC-GLAM is slower
than PPO-GLAM when considering wall-clock time to reach 400K environment steps.
However, when augmented with HER, SAC-GLAM not only improves sample efficiency
further but also closes the gap in time efficiency, achieving performance comparable to
PPO-GLAM in terms of total training time.
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Figure 5.2: Performance comparison of SAC-GLAM and PPO-
GLAM in the Playground-Text environment. We show the average
success rate as a function of the number of steps (left) and the average
success rate over time in seconds (right). The mean and standard deviation
are calculated across 4 seeds.
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Ablations

We now present a series of ablation studies exploring architectural choices and hyper-
parameters in SAC-GLAM (without HER), using a simplified environment setup that
excludes sequential goals and limits the object set to N = 3. We begin by examining
alternative architectures and learning schemes for the critic, aiming to improve conver-
gence speed, as previously discussed in Section 5.1.1. In our configuration, the critic is
implemented as an MLP appended to the final decoder block of the LLM, resulting in
shared weights between the actor and critic. We investigate two distinct approaches for
computing Q-values:

1. Observation input: The critic takes the observation as input and outputs Q-values
for each possible action. This method is commonly used in discrete action spaces.

2. Observation-action input: The critic takes the concatenation of the observation
and action as input, producing a single Q-value. This approach is more typical in
continuous action spaces.

As well as two ways to fine-tune our critic:

1. Backpropagation through the LLM: The critic shares parameters with the
actor and allows gradient backpropagation through these shared layers, enabling
joint learning of the underlying representations.

2. No changes to the LLM: In this case, the critic shares parameters with the actor,
but gradients are backpropagated only through the critic’s MLP head, keeping the
shared layers only affected by policy improvement.

As shown in Figure 5.3, the critic architecture that conditions on both the observation and
the action outperforms the variant that relies solely on the observation. Furthermore, the
configuration in which gradients are propagated through both the MLP and the shared
LLM parameters achieves better performance than the version where gradient flow is
restricted to the MLP head. We hypothesize that this increased stability arises from the
richer latent representations passed to the MLP—representations that more effectively
encode both the prompt and the candidate action.

We then examine the influence of hyperparameters controlling the updates. In RL,
the update frequency plays a crucial role in balancing sample efficiency against the risk
of overfitting to collected data. This is especially critical in on-policy settings, where
updates rely exclusively on recent samples. However, in the context of large-scale policies
such as LLMs, tuning the update frequency is equally important in off-policy settings,
since gradient updates can become slower than data collection itself. In addition, both
PPO and SAC include a hyperparameter that determines how many gradient updates
are performed per batch of collected data—a factor that also significantly affects sample
efficiency.

We study different values for these parameters for both SAC and PPO. In the case of
PPO, we observed that updating the model too frequently (every 1024 steps) leads to the
method plateauing at a suboptimal policy. Additionally, performing too many epochs
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Figure 5.3: Comparison of critic architectures. The blue curve represents
the architecture where both the observation and action are inputs, producing
a single Q-value. The orange curve corresponds to the architecture where
only the observation is input, producing Q-values for each action. The left
plot illustrates the case where gradients are backpropagated only through
the MLP head, while the right plot shows the case where gradients propagate
through both the MLP and shared LLM parameters. Mean and standard
deviation are computed across two seeds.

(32) at each update introduces instability in the training process (Figure 5.4). Concerning
SAC, the method benefits from frequent updates with multiple epochs, inducing a balance
between sample and time efficiency (frequent updates and multiple epochs imply slower

training).
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Figure 5.4: Comparison of different update frequencies and epochs
for PPO and SAC. In PPO, nb_ epochs refers to the number of times
the model processes each transition during an update, while, for SAC, it
represents the number of batches sampled from the replay buffer during each
update.

We conclude our ablation studies by examining the impact of the Temporal Difference
(TD) loss on sample efficiency. Increasing the n parameter in the n-step return enhances
the magnitude of the bootstrap estimate, allowing reward signals to propagate more
effectively to earlier steps in the episode. This often accelerates convergence. However,
larger values of n also introduce greater off-policy bias, which can destabilize learning.
To mitigate this effect, we experimented with reducing the size of the replay buffer,
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thereby limiting the age of sampled trajectories. Figure 5.5 compares the performance of
SAC-GLAM under varying n values and replay buffer sizes.

Based on these results, we chose to use 3-step returns in our experiments, as 5-step
returns introduced instability. Additionally, we opted for a replay buffer with a capacity
of 100000, which provided greater stability compared to using a larger buffer.
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Figure 5.5: Comparison of n-step parameters and replay buffer size.
The left plot illustrates the impact of the n parameter (using a replay buffer
with a capacity of 100000), while the right plot shows the effect of the replay
buffer capacity parameter (when using 3-step returns).

5.1.3 Conclusion

In this work, we introduced SAC-GLAM, an off-policy RL approach that adapts SAC
and HER for the functional grounding of LLMs. We highlighted the unique challenges that
actor-critic methods pose when applied to pre-trained policies such as LLMs, particularly
in balancing policy and critic convergence. Our ablations showed that design choices such
as introducing a warmup period, sharing weights between actor and critic, using a single
Q-value head, and employing n-step returns allow SAC-GLAM to achieve comparable time
efficiency to PPO-GLAM while exceeding it in sample efficiency. Beyond outperforming
PPO-GLAM in a standard multi-goal RL setting, SAC-GLAM also lays the groundwork
for autotelic functional grounding of LLMs—where hindsight experience replay and
off-policy RL are essential mechanisms.

Nonetheless, SAC-GLAM has several limitations. While appending the action to the
prompt in the critic architecture improves convergence speed, it becomes computationally
expensive as the action space grows. Moreover, the broader challenge of stabilizing
actor-critic training when the actor is a large, pre-trained model remains an open question
deserving further investigation. Lastly, although HER enables autotelic agents to extract
learning signals from unsuccessful trajectories—which naturally arise when goals are
self-selected—such trajectories are still costly. A promising way to reduce their frequency
is to improve the goal-selection strategy by selecting goals that match the agent’s current
abilities.

In the next contribution, we shift our focus to the goal-selection aspect when turning
LLMs into autotelic RL agents. In particular, we introduce MAGELLAN, an ACL
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approach for functional grounding of LLMs. MAGELLAN augments LLM agents with
metacognitive capabilities, allowing them to estimate their own competence and select
goals accordingly.

5.2 MAGELLAN: Metacognitive predictions of learning progress

guide autotelic LLM agents in large goal spaces

We previously discussed how humans are open-ended learners, continuously exploring
and acquiring new skills throughout their lifetime through curiosity-driven learning
(Berlyne, 1954; Kidd & Hayden, 2015). This exploration is often goal-directed: caregivers
initially guide learners by selecting appropriate tasks (i.e., scaffolding), and over time,
this process becomes internalized, giving rise to autotelic learning. To navigate an
effectively infinite space of potential goals—without the time or resources to explore it
exhaustively—humans rely on intrinsic motivation signals (Baldassarre & Mirolli, 2013;
Gottlieb & Oudeyer, 2018). Among these, research has highlighted the central role of
Learning Progress (LP)—that is, the improvement in one’s ability to achieve a goal—as a
key signal driving exploration and guiding developmental learning (Kaplan & Oudeyer,
2007).

Computational modeling work showed both how it enables efficient automatic curricu-
lum learning (Lopes et al., 2012; Poli et al., 2024) and how it generates developmental
trajectories that simulate key properties in the development of human infants (Oudeyer &
Smith, 2016). Recently, several experimental paradigms where humans were free to explore
various learning activities confirmed that humans use metacognitive LP monitoring to
explore and prioritize goals (Ten et al., 2021; Leonard et al., 2023; Sayali et al., 2023; Poli
et al., 2024). Autotelic artificial agents selecting goals that maximize LP were shown to
efficiently allocate the agent’s learning time by avoiding goals that are either too easy or
too difficult (e.g., see the survey from Portelas et al. (2020b) as well as the benchmark
from Appendix H), enabling even physical robots to acquire complex skills like tool use
in just a few dozen hours (Forestier et al., 2022). However, while these methods show
promise in constrained settings, scaling them to open-ended learning remains challenging.
The key difficulty lies in efficiently estimating an agent’s current competence and expected
LP across potentially infinite, evolving, and high-dimensional goal spaces — a fundamental
challenge we address in this work.

In particular, current approaches leveraging LP fall short at handling discrete, high-
dimensional and structured goal space, such as language-specified goals that LLMs face
when being functionally grounded. Indeed, existing methods either work only on small low-
dimensional goal spaces (Baranes & Oudeyer, 2013; Portelas et al., 2020a; Kanitscheider
et al., 2021; Zhang et al., 2024b) or rely on expert-defined goal groupings to reduce
the number of goals (Colas et al., 2019; Akakzia et al., 2021; Kumar et al., 2024). In
particular, none of them are able to capture the semantic relationships between goals to
efficiently estimate an LLM agent’s generalization abilities.

In this work, we study how to estimate LP over natural language goals such that
an LLM agent learning with online RL in an interactive environment could increase its
overall functional competence as efficiently as possible. For this, we introduce MAG-
ELLAN, for MetAcognitive GEneralization of Learning progress in LANguage model
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agents. MAGELLAN leverages the LLM inside the agent to learn an LP estimator
that automatically learns semantic relationships and tracks competence transfer between
goals in a sample-efficient manner (see Figure 5.6). We evaluate MAGELLAN in the
Little-Zoo environment specifically designed as a carefully controlled experimental setup
for commonsense-based generalization of agents in a textual environment. In particular,
we study the following scientific questions:

e Q1. Given an initial set of language goals, how does MAGELLAN’s estimation of a
learner’s competence compare to more classic methods? How does this estimation scale
with the size of the goal space?

e Q2. Can MAGELLAN be used by an online RL LLM agent to self-organize an

efficient learning curriculum over these goals?

e Q3. How well can MAGELLAN’s estimation generalize to predict the agent’s
competence on unseen goals?

e Q4. When these new unseen goals are introduced throughout training, can MAG-
ELLAN leverage its generalization abilities to integrate new goals into the curriculum
seamlessly?

We show that MAGELLAN 1) accurately and efficiently approximates LP, 2) allows an
LLM agent to master all goals from Little-Zoo while prior methods fail when not provided
extensive expert knowledge, and 3) generalizes its LP estimation to never-seen goals,
enabling faster adaptation to evolving goal spaces. Moreover, we show MAGELLAN learns
to cluster goals and achieves results comparable to an LP estimator with expert-defined
groups.
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Figure 5.6: Navigating large goal spaces with MAGELLAN: During
training, our LLM agent uses MAGELLAN to estimate its past and current
competence to compute absolute LP (ALP) on each goal. Given the per-
goal ALP, the LLM agent’s goal selector chooses the next goal to practice
proportionally to their ALP. The LLM agent then performs a trajectory to
achieve this goal and the outcome is used to update both the LLM agent
with online RL and MAGELLAN’s competence estimation.
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5.2.1 Related Work
Goal selection in autotelic agents

Autotelic agents exploring vast goal spaces face a critical challenge: they must
prioritize which goals to pursue to efficiently develop general competence (Colas et al.,
2022b). The ACL community has developed various approaches to address this challenge
(Portelas et al., 2020b), leveraging different forms of intrinsic motivation: pursuing goals of
intermediate difficulty (Florensa et al., 2018; Racaniere et al., 2020; Castanet et al., 2023;
Rutherford et al., 2024), seeking novelty or uncertainty (Warde-Farley et al., 2019; Pong
et al., 2020; Pitis et al., 2020), maximizing regret w.r.t. an optimal policy’s performance
— mostly used in Unsupervised Environment Design (UED) methods (Dennis et al.,
2020; Jiang et al., 2021a; Parker-Holder et al., 2022) — or maximizing LP (Stout &
Barto, 2010; Matiisen et al., 2017; Fournier et al., 2018; Portelas et al., 2020a; Colas
et al., 2019; Kanitscheider et al., 2021; Kovac et al., 2023; Zhang et al., 2024b). ACL
methods also differ in their use of the goal space: while some methods assume access
to all goals in advance (e.g., (Matiisen et al., 2017; Kanitscheider et al., 2021; Portelas
et al., 2020a)), others generate goals (e.g., (Florensa et al., 2018; Castanet et al., 2023;
Dennis et al., 2020)). Another important difference lies in the final objective one seeks.
While regret-based approaches seek to produce robust agents that can handle new, unseen
goals, focusing on the worst-case performance (Rutherford et al., 2024), other methods
seek to obtain agents maximizing their performance, either over all the goals or over a
pre-defined subset of goals (Klink et al., 2020, 2024). When considering the objective
of performance maximization over the complete goal space, LP-based methods have
proven particularly robust, especially upon a limited training budget in which it is not
possible to learn all goals (Lopes & Oudeyer, 2012). They adapt to the agent’s capabilities
without requiring environment knowledge and avoid common pitfalls like getting stuck
on goals where progress plateaus or chasing uncontrollable novelty (see benchmark from
Appendix H for empirical comparisons). The key challenge with LP approaches lies in
efficiently estimating progress over large goal spaces, which is the focus of our work.

Computing LP over goals

LP measures the expected future improvement in achieving a goal through practice
(Oudeyer & Kaplan, 2007). Since future progress cannot be directly measured, most
approaches use past progress as a proxy, with the recent exception of Kumar et al. (2024)’s
Bayesian prediction model. The most direct approach to estimate LP is to regularly
reevaluate the agent’s competence for each goal (Kanitscheider et al., 2021; Zhang et al.,
2024b), which accurately captures competence transfer — the phenomenon where practic-
ing one goal affects performance on other goals. However, this becomes computationally
prohibitive for large discrete goal spaces and is just impossible for continuous ones. Une
way to address this is to only rely on online estimations, where a goal’s estimated com-
petence is only updated when this goal is practiced. Online estimations nonetheless fail
to capture competence transfer, and existing methods addressed this by grouping goals
with similar competence together. For continuous spaces, approaches either learn to
partition the space directly when dimensionality is low (Oudeyer & Kaplan, 2007; Baranes
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& Oudeyer, 2013; Portelas et al., 2020a), or first embed high-dimensional goals into a
lower-dimensional space before partitioning (Laversanne-Finot et al., 2018; Kovac et al.,
2023). For discrete spaces, methods typically rely on expert-defined groupings (Stout &
Barto, 2010; Matiisen et al., 2017). However, these grouping approaches are inherently
brittle: they assume no transfer between groups while potentially masking competence
variations within groups. This limitation is particularly acute for high-dimensional struc-
tured spaces like natural language, where competence transfer naturally occurs between
semantically similar goals regardless of predefined groupings. Instead, MAGELLAN
leverages an LLM’s semantic understanding to dynamically model competence transfer
between goals, enabling efficient and adaptive LP estimation without requiring predefined
groupings or exhaustive evaluation.

5.2.2 Methods

We now detail how MAGELLAN learns a metacognitive module that estimates and
generalizes an agent’s LP over language goal spaces. We then explain classic LP baselines
against which MAGELLAN is compared. Finally, we introduce the Little-Zoo environment,
specifically designed to study commonsense-based generalization abilities of LLM agents
when facing large language goal space.

Problem statement

Let M = (S, A, T,R) be an MDP, with S a set of states, T the transition function,
A the action space and R the reward function. Let G be a goal space and II the policy
space. We define a competence function Cy . : G — R that indicates the competence
of a policy m € II for a goal in M.! The final aim is to find the optimal policy 7* that
maximizes

Im(m) = Bgats(@) [Cra 2 (9)],
where U(X) is the uniform distribution over a set X.

In this work, we focus on episodic online goal-conditioned RL with sparse and binary
rewards, defined on a goal-augmented MDP (S, A,7,G,R), with R: S x G — {0;1} a
binary success function indicating whether a state s satisfies a goal g. Here, we define
G = {Sy x I|Sy C S}, with I an instruction space and Sy the set of initial states. We
consider a textual environment where a prompting function ¢ : S x I — V¥ is given
to transform any pair (state, instruction) into a textual prompt of K tokens in a given
vocabulary V. Thus, from the agent side, the policy 7 selects any action a;, € A by
sampling from a categorical distribution 7(.|¢(sy,7)) at any step h of the episode.

For our competence function we use the success probability P, (sg,) defined as the
probability for 7, starting from s, to fulfill i within H steps: P(s0,%) = Eror(r|g(s0.0))[Tr.i)s
with 7., = 1(3sp, € 7, R(sp, 1) = 1) the goal outcome of episode 7 for instruction ¢, 1 the
indicator function and 7(7|¢(sg,7)) the distribution of episodes of H steps induced by =

n all generality a competence function does not assume the goal to be inside the MDP. For instance,
g could ask for a maximum number of steps.
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to fulfilling ¢ from sq. In this setting our objective becomes:
J(m) = Esgmta(So),i~u(1) [P (805%)] -

However, given the possibly huge number of goals (sg, ), the direct maximization of
the problem becomes particularly inefficient. Our aim is to leverage transfer of competence
between goals and focus during training on the ones maximizing LP. We denote as 7' the
policy obtained after ¢ episodes using an RL algorithm, with T' the set of all trajectories
collected during training using {7*~!|k € [|1,¢|]}. The goal of each episode is sampled
using a task selector 7 that selects a goal based on collected trajectories ng (') = g.
Given a budget of T training episodes, we thus consider the problem of approaching
the optimal selector 1}, = arg max,, J(7*). In particular, we build on prior work to
construct ng on a proxy of the LP at each training episode t. We define the LP for any
goal g = (s¢,17) as the improvement of the policy at episode t after k episodes on goal g:
LP*(g) = Pru+x(g9) — Prt(g). As highlighted in Section 5.2.1, since computing the future
competence on all goals is intractable, prior approaches approximate future progress with
past progress (LP¥ (g) ~ P,:(g) — Pr:-x(g)). Nonetheless, accurately estimating past and
current competence remains a challenge in large discrete goal spaces.

Metacognitive generalization of learning progress in
language model agents

With MAGELLAN, we propose to learn estimators of the current and past policy’s
competence for any goal. As opposed to prior works, which either consider all goals
independently or use goal groupings, we argue that learning goal-conditioned estimators
would allow generalization between similar goals without defining any clear group. We
propose to leverage the LLM used by our agent to learn the parameters 8, of a competence
estimator Cy, (g) for a policy 7, on a goal g. We compute Cp, (g) by giving ¢ in the LLM’s
prompt, which produces a latent representation on top of its final decoder block for the
last token. We use a Multi-Layer Perceptron (MLP) to output the estimated competence
based on this representation. We train both the LLM and the MLP, leveraging the LLM’s
ability to project goals into a latent space where semantically similar goals are close. By
updating the estimated competence of one goal, this allows MAGELLAN to also update
close goals.

In practice, we maintain a buffer D, which contains, for the M most recent train-

=M 7t), their corresponding pair of goal and outcome (i.e.,

ing episodes at t (i.e., T
(9 = (s0,1),7,,:) for each 7). As this work focuses on success probability (i.e., we want
Cy,(9) = P,:(g)), we train Cp, using stochastic gradient descent to minimize the binary

cross-entropy: L(0;) = E ry~p, [BCE(r,Cy,(9))].

We maintain another buffer ; storing the last N weights of our competence estimator:
By =[0i—n,0i41-nN, - .., 0;]. Weights are added to the buffer every time the competence
estimator is updated, enabling access to estimations of the policy’s competence from
time ¢ to ¢ — N. Using this information, we estimate the absolute LP (ALP) (Baranes
& Oudeyer, 2013; Kanitscheider et al., 2021), tracking both progress and forgetting, as
follows:

ALP,,(9) = |Ca,(9) — Co, _»(9)|- (5.4)
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This ALP estimation can subsequently be used to structure the agent’s curriculum. We
apply the multi-armed bandit goal selection scheme introduced by Lopes & Oudeyer (2012)
where each arm is a goal, and its utility is MAGELLAN’s estimate of this goal’s ALP.
Goals are then sampled proportionally to their estimated ALP (also called Boltzmann
sampling) with an annealing exploration probability € (¢ decreasing from 1 to 0.2). In
practice, we train two separate versions of the same initial LLM (using LoRA adapters
(Hu et al., 2022)): one for the policy and one for MAGELLAN’s current competence
estimator. We show in Appendix E.4.1 ablations on architectural choices indicating that
1) keeping the LLM frozen leads to poor results, highlighting the need for a dynamic
representation space (see also Figure 5.11), and 2) training separate LoRA adapters for
the policy and MAGELLAN leads to more stability.

Classic ALP baselines

Following the literature on ALP in Section 5.2.1, we implement classic approaches,
focusing on two dimensions. First, we consider Online (Baranes & Oudeyer, 2013;
Matiisen et al., 2017) vs Evaluation-based ALP (Kanitscheider et al., 2021; Zhang et al.,
2024b) estimation. Then, we consider directly using the goal space (Portelas et al.,
2020a; Kanitscheider et al., 2021) or using expert-defined groups of goals with assumed
competence transfer (Stout & Barto, 2010; Colas et al., 2019). The latter requires
extensive expert knowledge (EK) given the absence of automatic approaches for discrete
goal spaces. As expert-defined groups are created beforehand, no competence transfer is
assumed across groups, which is likely to happen in spaces like natural language, where
transfer occurs between semantically close goals regardless of groups.

We thus implement four baselines (see all details in Appendix E.3.3):

e Eval-ALP: Every N episodes, training stops and the agent is separately evaluated
on each goal to obtain a competence estimate. The per-goal ALP is the absolute
difference between estimates at t and ¢t — N. The same goal selection scheme as in
MAGELLAN is used according to the per-goal ALP estimations.

¢ EK-Eval-ALP: Every N episodes, training stops and the agent is evaluated on
multiple goals randomly sampled in each expert-defined group to obtain a per-group
averaged competence. The per-group ALP is computed using the absolute difference
between the competence at ¢t and ¢ — N. The goal selection process first selects a
group using the same selection scheme as MAGELLAN for goals. Given a selected
group, a goal from this group is randomly selected.

e Online-ALP: At each goal practiced, the observed policy’s competence is added
to a buffer of 2M past experiences for this goal. The ALP is computed using
the absolute difference between the average competence over the last and first M
experiences in the buffer. The same goal selection scheme as MAGELLAN and
Eval-ALP is used.

¢ EK-Online-ALP: At each goal practiced, the observed policy’s competence is
added to a buffer of 2M past experiences for the goal’s expert-defined group. The
per-group ALP is computed using the absolute difference between the average
competence over the last and first M experiences in the group’s buffer. The same
goal selection scheme as EK-Eval-ALP is used.
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We summarize the four methods above and MAGELLAN in Table 5.1 based on their
Efficiency (i.e., computational cost introduced by additional evaluations), Competence
Transfer tracking and no Ezxpert Knowledge requirement. We consider a method’s efficiency
as “high” if it does not require any additional evaluation (i.e., it only uses the performance
observed on goals sampled), and as “low” otherwise. We evaluate the competence transfer
tracking using the following criteria:

e absence of +: the estimated competence is updated only on sampled goals.

e +: the estimated competence is updated on a predefined group the sampled goal
belongs to.

e —+: the estimated competence is updated on a dynamically learned group the
sampled goal belongs to.

e ++-+: the estimated competence is updated on all goals.

We provide in Appendix E.2 the same table for all prior works covered in Section 5.2.1.

Eff. Transf. No EK

EK-Eval-ALP low + X
Eval-ALP low +++ v
EK-Online-ALP high + X
Online-ALP high v
MAGELLAN high  +++ v

Table 5.1: Comparison of ALP estimation methods. We use the following
dimensions: computational Efficiency, competence Transfer tracking, and
required Expert Knowledge.

The Little-Zoo environment as a testbed

Evaluating commonsense-based generalization of LLM agents in textual environments
requires several key properties. The environment must be fully text-based, with all
observations, actions, and goals expressed in natural language. It should feature a diverse
set of goals with varying difficulty levels, enabling the assessment of the agent’s ability to
learn and generalize complex skills. Additionally, these goals should be organized into
hidden families based on commonsense knowledge, allowing for targeted evaluation of
generalization capabilities.

Existing environments for LLM agents do not have such requirements. Creative
environments such as Minecraft (Johnson et al., 2016) or Crafter (Hafner, 2022) rely on
image-based observations and require an image captioner to use LLM agents. Textual envi-
ronments such as BabyAl-text focus on navigation skills without any commonsense-based
generalization. Although WordCraft (Jiang et al., 2020) incorporates commonsense-based
goals, no relationship between goals exists, limiting the analysis of the agent’s general-
ization abilities. To address these gaps, we introduce Little-Zoo, a novel environment
explicitly designed to meet these criteria.

Built upon the Playground environment (Colas et al., 2020), Little-Zoo is fully text-
based, with observations, goals, and actions expressed in natural language. It features
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objects that can be combined together and are grouped into the following hidden categories:
furniture (which cannot be combined), plants, herbivores, and carnivores. Given the set
of all objects and a set of instructions, Little-Zoo’s goal space is the combination of all
possible instructions and scene initializations. The feasibility of a goal thus depends on
the objects available, making most combinations infeasible and not trivial to detect (see
Figure 5.7 and Appendix E.1.3). For instance, these are respectively feasible and infeasible
goals: “Goal: Grow deer. You see: baby deer, bookshelf, water, tomato seed.”; “Goal: Grow
deer. You see: baby deer, bookshelf, baby lion, tomato seed.” (water is missing in the last
one). Instructions are hierarchically structured, ranging from simple grasping tasks to
more complex sequences involving object interactions (e.g., "growing" animals). The
complete goal space contains approximately 20 million combinations. In our experiments,
we subsample goals with the following proportions: 80% of the goals are impossible 16%
involve grasping, 3.2% involve growing plants, 0.7% involve herbivores, and 0.1% involve
carnivores. These proportions correspond to proportions in the complete goal space (see
Appendix E.1.4).

Little-Zoo is a deterministic, fully-observable and episodic environment: the agent
begins an episode by standing on nothing, with full visibility of the whole scene. The
action space consists of 8 actions, including movement to objects, grasping, and releasing
objects. Ubservations include the objects in the scene, the ones in the agent’s inventory,

as well as the object the agent is standing on. See Appendix E.1 for details on Little-Zoo.

Goal space

( Objects in the scene
Instructions Y S Y

. “Grasp table”
plant
- “Grow lion”
seed herblvore

. - “Grow sheep”

herbivore camivore

“Grow carrot”
carmiire R

AN
4

Difficulty “Grow wolf”

f[-IIII

B)

Instruction: Grow lion
Given to MAGELLAN
—> You see: water, baby lion, baby
Gmw lion” cow, carrot seed 5
Instruction: Grow lion
You see: water, baby lion, baby
cow
You are standing on: nothing Givento LLM agent
2 the policy

Inventory (1/2): carrot seed

Action: ‘

Jnvenzorz Go to water

Action produced by
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Figure 5.7: A) Little-Zoo’s tech tree. B) Little-Zoo’s goal space is composed
of all the possible combinations between instructions and objects that can be
in the scene. Most object configurations make an instruction infeasible (e.g.,
"grow lion" is impossible with the second configuration, as water, needed to
obtain plants, is missing). C) Little-Zoo provides a textual description that
is given in our LLM agent’s prompt.
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5.2.3 Experiments

We provide empirical answers to our scientific questions using experiments with
8 different random seeds in the Little-Zoo environment. For our LLM agent, we use
SAC-GLAM (from Section 5.1) to fine-tune Flan-T5 248M (Raffel et al., 2020), as in
SAC-GLAM’s experiments. We compare MAGELLAN to the classic approaches presented
in 5.2.2. For methods accessing external expert knowledge, we use Little-Zoo’s hidden
goal families (grasp any object, grow plant, grow herbivore, grow carnivore), but add only
possible goals in these groups. Indeed, these baselines are based on groups predefined in
advance by human experts with a strong assumption: the goals within a group share the
same learning dynamics and therefore the agent’s competence is the same over all goals
in the group. If impossible goals were included, these groups would lose their relevance.
Moreover, because of the large number of impossible goals, the average competence within
each group will always be very close to 0. There will be no progress niche that the method
can use to generate a curriculum, and performance will likely be close to the random
baseline. We thus provide an additional group containing all impossible goals. In all our
experiments, we use the success rate (i.e., average outcome over multiple trials for a goal),
noted SR, as the observed competence.

We first study how MAGELLAN’s competence estimation compares to baselines
(Q1). Then, we study how the different methods (except Eval-ALP and EK-Eval-ALP,
which are too costly to run, while EK-Online-ALP provides a good estimation of their
performance) compare when scaffolding the LLM agent’s curriculum (Q2). We show
how these competence estimators also generalize to goals not seen during training (Q3).
Finally, we study how all methods adapt as the goal space evolves (Q4) by replacing all
goals at different points throughout training.

How well does MAGELLAN estimate
competence (Q1)

To assess the ALP methods’ ability to efficiently estimate competence, we designed
an experimental setup in which our LLM agent was trained for 50k episodes on the
Little-Zoo environment with varying goal space sizes (25k, 50k, 100k), while keeping
the same repartition between goal types. As computing the expected ALP to train this
agent is intractable, one could argue that Eval-ALP is the best approximation. However,
it remains too computationally costly to run, even when performing only 50k training
episodes with 25k goals. We thus chose to sample goals according to EK-Eval-ALP’s
estimations. To obtain an accurate estimate, we perform 2048 per-group evaluations every
1000 episodes. The per-group competence evaluated by EK-Eval-ALP is consequently
our competence reference, and we compare the other methods against it. For Eval-ALP,
we consider it to have zero error, and its computational cost can be estimated without
running it. For MAGELLAN and Online-ALP, we average the per-goal competence over
groups to compute the error w.r.t. EK-Eval-ALP. Figure 5.8 shows the average error on
competence throughout training along and the cost of competence evaluation (i.e., the
total number of episodes used only to evaluate competence).

As indicated in Table 5.1, MAGELLAN performs on a par with Eval-ALP, showing
that it accurately estimates the transfer of competence while using online estimations. We
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also observe similar competence errors to methods using expert-defined groups, hinting at
MAGELLAN’s abilities at learning semantical relationships between goals. We provide a
more in-depth analysis of such relationships in Appendix E.4.4. Finally, MAGELLAN
achieves this performance without an estimation cost.
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Figure 5.8: Scaling of competence estimation error and competence estimation
cost (i.e., total number of additional evaluation episodes) when increasing
the goal space size.

To demonstrate that our method generalizes beyond the Little-Zoo environment, we
conducted an additional experiment using goals derived from the UpenR1-Math-220k
dataset (Hugging Face, 2025). In this setup, instead of training an RL agent, we simulate
the learning of an agent that progressively acquires skills in three categories: Algebra,
then Geometry, and finally Number Theory. We compare the competence estimation from
MAGELLAN and Online-ALP to the underlying true competence. Figure 5.9 shows that
MAGELLAN accurately tracks the agent’s competence and distinguishes between the
different mathematical categories, clearly outperforming Online-ALP. Additional results,
including experiments in the BabyAI-Text environment and an ablation study on the
impact of LLM size on MAGELLAN’s estimations, are provided in Appendix E.4.2.

Training an LLM agent with MAGELLAN (Q2)

As demonstrated in 5.2.3, MAGELLAN provides a superior competence estimation
than Online-ALP. We further investigate whether this improvement translates into a better
curriculum and improved overall goal mastery. We train our LLM agent on the goal space
of Little-Zoo with 25k goals for 500k episodes using four methods: MAGELLAN, Online-
ALP, EK-Online-ALP and "Uniform", where goals are sampled uniformly. We do not
report EK-Eval-ALP, as we report EK-Online-ALP, which produces similar competence
estimation with no cost. We report the agent’s SR every 5000 training episodes by
evaluating it on 64 goals uniformly sampled for each category. Figure 5.10 shows the
evolution of SR averaged over all categories. Our results show that MAGELLAN is
the only method without expert-defined grouping to obtain an SR of at least 90% in
all categories. It also masters the categories significantly faster than baselines. Despite
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Figure 5.9: Competence estimation on UpenR1-Math-220k. MAGELLAN
(blue) accurately tracks competence across Algebra, Geometry, and Number
Theory, closely matching true success probabilities and outperforming Online-
ALP (orange).

MAGELLAN’s similar competence estimation as EK-Online-ALP, the latter learns faster
by leveraging the expert-defined groups to better explore. This is because MAGELLAN
explores by uniformly sampling goals whereas EK-Online-ALP uniformly samples groups,
easily discarding impossible goals.

MAGELLAN’s generalization abilities (Q3)

We move further and study the generalization abilities of both our LLLM agent and
competence estimators. While Section 5.2.3 evaluates each policy on 64 goals per category
that belong to the training goal space, this section reports evaluation on a held-out test set
composed of unseen goals. As in the previous section, evaluations were performed every
5000 training episodes. However, instead of reporting the policy’s observed competence
(SR) during evaluation, we report the difference between the observed competence and
the competence estimated by the policy’s ALP method. We show in Table 5.2 the average
error over training.

By only tracking competence on goals practiced by the policy (i.e., the ones from the
training goal space), Online-ALP cannot provide any estimation for new unseen goals and
uses its default competence of 0. This leads to the largest error among methods except
for "Grow carnivore" goals as the policies trained with Online-ALP never mastered these
goals (see Figure 5.10). MAGELLAN successfully generalizes its competence estimation
and obtains a small error. Finally, EK-Online-ALP produces accurate estimations based
on expert knowledge of which group each test goal belongs to. Appendix E.4.4 provides
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Figure 5.10: Evolution of the observed competence (SR) when evaluating
policies on 64 training goals per category every 5000 episodes. We report
the average SR over evaluated goals along with standard deviation (8 seeds).
Icons indicate the average time step at which a method mastered a goal (i.e.,
SR > 90%). We add stars to MAGELLAN, denoting significantly earlier
mastery of a category compared to the method with the star’s color (p-value
< 8x 107*). The dotted line (EK-Online-ALP) indicates that the method
relies on expert knowledge.

detailed results indicating our LLM agents do not perfectly generalize, which explains
MAGELLAN and EK-Eval-ALP estimation error.

Table 5.2: We evaluate the policies trained with each ALP method on a
held-out test set. We show the difference between the observed and predicted
competence. Online-ALP’s performance on "Grow carnivore" is simply
explained by the fact that its policies never mastered this goal category.

Categories MAGELLAN  Online-ALP EK-Online-ALP
(Mean £ Std) (Mean £ Std) (Mean £ Std)
Grasp 0.01 + 0.00 0.98 + 0.00 0.01 + 0.00
Grow plant 0.05 + 0.03 0.78 + 0.07 0.03 + 0.01
Grow herbivore 0.08 + 0.05 0.34 4+ 0.18 0.06 4+ 0.02
Grow carnivore 0.30 £ 0.16 0.00 + 0.00 0.28 £+ 0.08
Mean 0.11 + 0.06 053 £0.06 |  0.09+003

We further investigate MAGELLAN’s generalization abilities by projecting train (Q2)
and test (Q3) goals from a single seed into the LLM embedding space MAGELLAN
used. The embedding space is plotted both before and after training (Figure 5.11) with
projections obtained via t-SNE (Maaten & Hinton, 2008). The initial embedding space
lacks any discernible structure for goal classification. Post-training, the space exhibits
significant restructuring, with similar goals accurately clustered. A small subset of "Grow
carnivore" goals are misclassified as impossible, likely due to incomplete mastery of this

category by the LLM agent.
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Figure 5.11: MAGELLAN’s LLM embedding space displayed using t-SNE
with goals used in Q2 (Train) and Q3 (Test), along with the estimated
success probability and linear interpolation between goals. We show the
embedding space for a single seed (a) before training and (b) at the end of the
500k training steps. We see that impossible goals have been left aside, and
that the other goals with a high estimated success probability are clustered
consistently.

Furthermore, the spatial arrangement of goals correlates with estimated success rates:
newly learned goals tend to lie near the boundary with impossible goals. Additionally,
goals from the test set are well clustered, demonstrating strong generalization. We show
in Appendix E.4.4 that MAGELLAN also makes different clusters for impossible goals
based on the infeasibility reason, hinting that metacognitive monitoring abilities help
capture environment dynamics.

MAGELLAN’s adaptation to evolving goal
spaces (Q4)

Finally, we investigate how each ALP method can adapt when the goal space evolves.
For this, we isolate the training of one seed using MAGELLAN in Section E.4.3. Every 50k
episodes over the 500k training episodes, we stop training, replace the training goals with
the ones in our held-out test set, and start four trainings (with 8 seeds each) with this new
goal space: one with each ALP method for 50k steps. We expect MAGELLAN to quickly
adapt to new goals leveraging semantical relationships between the new and old goals.
Online-ALP starts with a competence estimation of 0 on the new goals as in Section 5.2.3.
For EK-Online-ALP, up to the episode where we change the goal space, we make it
track the policy’s competence in parallel to MAGELLAN. It thus starts with a per-group
competence estimation when the goals are replaced along with the information of which
expert-defined group each new goal belongs to. We study all adaptation training in
Appendix E.4.5 but isolate and study in Figure 5.12 two of them chosen as representative
of the scenarios encountered:

e Scenario zero LP (Figure 5.12a): The agent has mastered the "Grasp" and
"Grow plants" goals and has 0 ALP across all goals. In this scenario, all ALP
estimations are equivalent. EK-Online-LLP manages to discover new ALP niches
faster as all impossible goals are in the same group.
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Figure 5.12: Adaptation tests: Using a single’s seed training of 500k
episodes, we stop and replace all goals with unseen ones every 50k episodes.
We then resume training and sample goals using each method for 50k training
episodes. We show two isolated and representative points of goal replacement:
(a) there is no ALP on any goal (after 50k training episodes), and (b) some
goals (here, "Grow carnivores" after 150k training episodes) have a high
ALP. We report the evolution of SR when evaluating the policies on 64 goals
per category from the new training set every 5000 episodes. Results show
the average competence over evaluated goals along with standard deviation
(8 seeds).

e Scenario high LP (Figure 5.12b): The agent is getting a high ALP as it is
learning some "Grow carnivores" goals. Here, MAGELLAN outperforms baselines by
generalizing its ALP estimation and continuing training on these goals. MAGELLAN
even gets on par performance with EK-Online-LP.

5.2.4 Conclusion

In this work, we introduced MAGELLAN, a metacognitive module designed to
efficiently estimate an LLM agent’s LP across large language-defined goal spaces. By
leveraging the LLM within the agent, MAGELLAN accurately and efficiently estimates
LP by learning semantic relationships between goals. This approach fundamentally
differs from prior methods, which either struggle to scale to large goal spaces or rely on
expert-defined goal categories. Using MAGELLAN’s LP estimations, the LLM agent can
effectively structure its curriculum, enabling it to master all goals within an extensive goal
space. In contrast, previous methods achieve only partial mastery in the absence of expert-
defined categories. Moreover, MAGELLAN’s ability to capture semantic relationships
between goals allows it to assess the agent’s competence on unseen goals and rapidly

adapt as the goal space evolves.

Additionally, our analysis of MAGELLAN shapes the LLM’s embedding space (in-
cluding how impossible goals are clustered) hints that estimating helps capture the
environment’s dynamics. This evidence indicates that acquiring metacognitive monitoring
abilities requires one to grasp how the environment functions. We argue that this consti-
tutes another form of grounding, which might be complementary to functional grounding
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(and how it also permits capturing environmental dynamics as evidenced by Section 3.3).
While most experiments in this work used separate adapters for functional grounding
(i.e., learning the policy) and MAGELLAN, we believe that future work could further
investigate how combining the two using a single set of adapters (as done in architecture
A in Appendix E.4.1) affects the LLM’s internal representations.

While our study provides an in-depth analysis of MAGELLAN’s capabilities in a
controlled textual environment, the method itself is highly generalizable. It offers a goal
prioritization strategy applicable to any learner operating in a large, high-dimensional,
structured, and discrete goal space. Notably, goal spaces involving code appear particularly
promising, given the proficiency of current LLMs in code generation (Wang et al.,
2023a; Pourcel et al., 2024b). Additionally, traditional automatic curriculum learning
settings—where goals are not language-defined—could also benefit from MAGELLAN’s
ability to uncover relationships between goals. Beyond artificial learners, MAGELLAN
may also prove valuable for human learning, particularly in educational domains where
learners must navigate a large space of language-defined problems, such as mathematical
word problems (Doroudi et al., 2019). Classical LP measures have already been shown
to enhance personalized curricula in educational technologies (Clement et al., 2015),
suggesting MAGELLAN’s potential impact in this area.

Finally, while estimating one’s functional competence is necessary to prioritize what
to learn next, it is also valuable for identifying which tasks are currently beyond reach.
This ability allows one to find when external help is necessary. In the next contribution,
we study how learning metacognitive monitoring abilities can help LLMs identify when
their functional competence falls short and call for external assistance, for instance, from
another larger or more specialized LLM.

5.3 When goals are beyond reach: Metacognitive monitoring

guides autonomous discovery of frugal assistance-seeking
in LLMs

In the previous section, we introduced MAGELLAN, an approach designed to augment
LLMs with metacognitive abilities—specifically, the capacity to evaluate their own func-
tional competence across a wide range of tasks. We demonstrated that this self-monitoring
mechanism could be used to guide exploration over large goal spaces by prioritizing tasks
with high estimated Learning Progress. In particular, we showed that MAGELLAN can
capture semantic relationships between language-specified goals, allowing it to discover
competence transfer but also generalize its estimations to novel, unseen goals.

More broadly, enhancing LLMs with metacognitive capabilities has been identified as a
key challenge for improving the trustworthiness and interpretability of these models (John-
son, 2022; Johnson et al., 2025). In this section, we investigate how such metacognitive
abilities can be leveraged to trigger external assistance when the model’s own capabilities
are insufficient. While previous contributions have focused primarily on improving LLMs’
functional competence through interaction, it is equally critical that models learn to
recognize their own limitations—and to seek or rely on external support in real-world set-
tings where functional competence may be partial or underdeveloped. This ability forms
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a crucial part of a broader learning loop: requesting help when needed, then internalizing
the knowledge or skills acquired through that assistance. As such, while the present work
may not directly extend functional grounding, it constitutes a necessary precursor. We
argue that the capacity for help-seeking is foundational for building LLMs capable of
becoming functionally grounded in open, interactive environments—particularly when
these environments include human users as integral participants in the learning process.

Augmenting LLMs with external assistance and, in particular, what has been named
"tools", has become a well-established practice (Nakano et al., 2022; Yao et al., 2022;
Schick et al., 2023; Patil et al., 2023; Ge et al., 2023). These augmentations range from
calculators (Schick et al., 2023; Kadl¢ik et al., 2023) and retrieval systems (Parisi et al.,
2022; Nakano et al., 2022; Yao et al., 2022) to code interpreters (Gao et al., 2023; Wang
et al., 2024c), and even other LLMs (Ge et al., 2023). This shift has led to a rethinking
of the role of LLMs—mnot as general-purpose solvers, but as assistants (often referred to
as action models (Wang et al., 2025)) that must learn to orchestrate the use of external
resources and integrate their outputs into coherent, human-readable responses.

This reframing introduces a new class of decision-making problems: LLMs must
determine when and which external assistance to invoke. However, the optimal assistance
strategy is not known in advance. Some tasks may be solvable independently by the
LLM, while others may require external help. Additionally, the tools themselves may
be fallible—for instance, even large or specialized LLMs can return suboptimal results.
To address this, most prior approaches rely on supervised learning, fine-tuning LLMs on
curated datasets containing examples of effective tool use. More recently, several works
have begun exploring how RL can be used to learn assistance-seeking strategies from
scratch, without requiring predefined tool-use demonstrations (Wen et al., 2024b; Chen
et al., 2025; Li et al., 2025; Feng et al., 2025).

While both RL and more conventional supervised learning approaches have shown
promise, an important dimension of the assistance-seeking problem remains largely
understudied: external assistance comes at a cost. This cost may take the form of increased
latency in the LLM’s response, financial charges for calling APIs, or computational
overhead. Although early work on tool use—such as Schick et al. (2023)—acknowledged
this issue, it has received limited attention since. A recent exception is Min et al. (2025),
which introduced a first approach to this multi-objective problem: maximizing task
performance while minimizing assistance costs. Their method involves a multi-stage
learning pipeline: (1) an estimator of LLM performance is trained using interaction data
between the LLM and the task space; (2) a separate model is trained to simulate the
outputs of both the LLM and its assistance sources; and (3) given a predefined cost
budget, Dynamic Programming is used to derive the optimal assistance strategy. While
effective, this method is computationally intensive and requires extensive data collection
and training across multiple stages.

In this work, we propose a fully online approach based on multi-objective contextual
multi-armed bandits. Given a task, we frame the decision of whether to keep the task
with the LLM or delegate it to external assistance as the selection of an arm. Given a
task, we consider the dual objective of maximizing the answer’s performance R while
minimizing its cost C', and we adopt scalarization—i.e., combining the two objectives into
a single weighted sum U = SR+ (1 — )C that our approach aims to maximize. Crucially,
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our method naturally adapts to any specified user-specified budget by treating the budget
as the scalarization weight that balances the two objectives. A central challenge of this
approach lies in efficiently estimating the performance and cost associated with each
option (i.e., the LLM and all available assistance sources), using as few interactions
as possible. To address this, we draw inspiration from MAGELLAN and leverage the
LLM itself to learn these estimations. As demonstrated in Section 5.2, such LLM-based
estimators can generalize across semantically similar tasks, enabling faster and more
sample-efficient convergence.

We first evaluate our method on a set of carefully designed math problems with
calculator tools as assistance, for which the optimal strategy is known. This setting enables
us to investigate how the strategy discovered by our method compares to the optimal one,
as well as the sample efficiency of our approach (i.e., the number of interactions required
to converge). We notably show that our LLM-based estimation of performance and
cost reaches similar or even better performance than a classic moving average approach
which has access to privileged information—namely, the problem category. Finally, we
demonstrate the broader applicability of our method by applying it to real-world problems
faced by LLMs. In particular, we apply it to a standard question-answering benchmark:
MMLU-Pro (Wang et al., 2024d). The results show that our approach is scalable to
complex natural language tasks without access to any external expert knowledge.
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Figure 5.13: We frame the decision of whether an LLM should trigger external
assistance as a multi-objective contextual multi-armed bandit problem. For
each task, the LLM estimates the performance and cost of all available
options. These estimates are combined into a single utility score using a user-
defined scalarization weight, which specifies the trade-off between maximizing
performance and minimizing assistance cost. The estimator is continuously
updated through online interactions.

5.3.1 Related Work
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External assistance for LLMs

Augmenting LLMs with external assistance—particularly in the form of tools—has
been extensively explored in recent years. Much of the focus has centered on calculators
to enhance mathematical reasoning (Parisi et al., 2022; Schick et al., 2023; Kadl¢ik et al.,
2023; Hao et al., 2023b), information retrieval systems via databases or web search (Parisi
et al., 2022; Nakano et al., 2022; Lazaridou et al., 2022; Yao et al., 2022; Hao et al.,
2023b), and code interpreters to support multi-step reasoning (Gao et al., 2023; Wang
et al., 2024c; Christianos et al., 2023; Feng et al., 2025; Gehring et al., 2025). More
recently, another line of work has explored using other LLMs—typically larger or more
specialized—as a form of external assistance. While these models can be accessed via
API calls and integrated similarly to traditional tools, an emerging research direction
directly addresses the multi-LLM setting, where a dedicated routing function selects
which LLM to invoke for a given task (Yue et al., 2024; Ding et al., 2024). In this work,
we propose a method whereby an LLM learns to estimate both its own performance and
the performance of available assistance. This estimation guides the decision of whether
to keep a task or delegate it, using a multi-armed bandit framework. Our approach is
applicable to both tool-based assistance and multi-LLM scenarios (see Section 5.3.3).

Confidence estimations in LLMs

Recent work has increasingly focused on estimating the confidence of LLMs in their
functional competence. In the context of question-answering, several studies have explored
the relationship between token-level logits and model confidence (Mahaut et al., 2024;
Zhou et al., 2023), as well as the alignment between verbalized confidence and actual
correctness (Tian et al., 2023). In parallel, other approaches have proposed training LLMs
to output special uncertainty tokens when they are unsure about their answers (Cohen
et al., 2024; Chuang et al., 2025). Closer to our approach, Min et al. (2025) proposed
training an LLM to estimate its own functional competence for navigation tasks. However,
their framework separates the learning of the competence estimator from the learning of
the assistance-asking policy. In contrast, we propose a fully online method inspired by
MAGELLAN (introduced in Section 5.2), in which an LLM learns to estimate not only its
own competence, but also the competence of each available assistance. These estimations
are directly integrated into a multi-armed bandit framework to guide assistance-seeking
decisions.

Multi-objective optimization of LLMs

Balancing task performance and the computational cost induced by reasoning or
external assistance can be formulated as a multi-objective optimization problem. In the
context of tool use, Schick et al. (2023) constructed a supervised fine-tuning dataset by
retaining only tool calls that increased the likelihood of producing the correct answer
beyond a threshold 7. Li et al. (2025) employed RL to train an LLM to use a code
interpreter tool, introducing a fixed negative reward for tool calls that resulted in failed
executions—thus penalizing only inappropriate tool use. They also enforced a maximum
number of tool calls per query to avoid overuse. However, this approach has two limitations:
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1) it assumes prior knowledge of the optimal number of tool calls, and 2) it does not
prevent unnecessary tool use if the allowed maximum exceeds what is required. Min et al.
(2025) also penalize tool calls via a negative reward, but derive this penalty through
Dynamic Programming to ensure that the resulting strategy respects a pre-defined cost
budget. In contrast, our approach introduces negative rewards for assistance calls (with
several variants explored in our experiments) and directly balances performance and cost
via scalarization. Scalarization—combining multiple objectives into a single weighted
objective—has been used in multi-objective RLHF settings, where LLMs must trade off
between different preference-based rewards (Rame et al., 2023; Bahlous-Boldi et al., 2025).
Finally, recent research has explored reasoning as a cost-sensitive operation. For example,
Aggarwal & Welleck (2025) and Arora & Zanette (2025) train LLMs via reinforcement
learning to perform reasoning while minimizing the number of generated tokens, subject
to either a fixed token budget or a target performance threshold.

Multi-objective contextual neural bandits

Multi-objective decision-making has been widely explored in the multi-armed bandit
literature. Some methods directly optimize for Pareto efficiency using Pareto regret as
an objective (e.g., (Turgay et al., 2018)), while others—closer to our approach—rely on
scalarization, combining multiple objectives into a single one via weighted sums (e.g.,
(Drugan & Nowe, 2013; Qassimi & Rakrak, 2025)). In our case, however, the problem
takes the form of a contextual bandit setting, where both the task and the scalarization
weights must be jointly considered as context. Although contextual bandits have been
extensively studied, including in multi-objective scenarios (Turgay et al., 2018), most
classical methods operate under two key assumptions: 1) the context is represented as a
fixed-dimensional vector, and 2) the utility of each arm is a linear function of the context
features (Li et al., 2010; Valko et al., 2013). To move beyond these constraints, recent
approaches have turned to neural approximators for modeling the utility of context-arm
pairs (Zhou et al., 2020; Ban et al., 2023). Our work follows this line, where each
assistance source is treated as an arm, and its expected return is estimated using a neural
network. However, unlike prior work assuming structured or vectorized contexts, our
tasks are natural language prompts. To handle this, we extend the approach proposed in
MAGELLAN and use an LLM-based estimator capable of generalizing across semantically
similar tasks.

5.3.2 Methods

In this section, we present our approach. We begin by formulating assistance-asking
as a multi-objective contextual bandit problem, where both the task and the scalarization
weight are treated as part of the context. We then introduce a neural estimator inspired
by MAGELLAN, designed to predict the expected utility of different assistance options
and guide the decision-making process accordingly.
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Asking for assistance as a bandit problem

We consider a discrete space of tasks T that an LLM 7 must solve. These tasks can,
for instance, come from a dataset of questions, but could also be embodied tasks, as
in the remainder of this manuscript. We also assume a reward function (often called
outcome-based reward) R : T x A — R which associates a scalar performance to the
output a € A produced when executing 7 on a task 7 € 7. In the case of embodied
problems, A could be the set of possible trajectories in the environment. In this work,
we will consider natural language questions for which an LLM is rewarded based on how
close its natural language answer is compared to the expected answer. We therefore have
A C VM with V a token vocabulary and M the maximum length of answers.

We then introduce a set of potential N assistance ® = {¢y, ¢, ..., on}. Each ¢; €
is also, as 7, a function that produces an answer to a task (i.e., Vi¢; : T+ A)?. In this
work, we assume both 7 and all assistance to be frozen (i.e., they do not change over
time). In such a stationary case, choosing between 7 or any ¢; € ® for a task 7 € T so
as to maximize R can be framed as a contextual multi-armed bandit problem with:

o K = U{r}, the set of arms.
e 7T, the set of possible contexts.

o U(r,k) = Equr(n[R(7,a)], the utility of arm k& € K on task 7 as the expected
reward obtained by giving 7 to k.

We consider a purely online setting where tasks are sequentially (and uniformly) sampled
from 7. Given a set of collected task-outcome pairs and a new task, we look for a policy
that would optimally choose which arm to give the new task to.

We now introduce a second reward function C' : 7 x K — R~ which associates a
per-task negative reward (i.e., a cost) to each arm. With two objectives, R and C, we now
frame our problem as a multi-objective contextual bandit. We propose to integrate these
two objectives in our bandit using scalarization and introduce the global utility objective
U(r,k,B) = BR(7, k(7)) + (1 — B)C(7, k) where 8 € [0;1] balances the two objectives.

Performance and cost predictors

In this work, we consider natural language tasks as contexts for our bandit. Inspired
by the recent literature on neural contextual bandits and the success of MAGELLAN, we
propose to learn an LLM-based estimator Ey(7,k, 8) =~ U(, k, ) which approximates U
without needing to run k(7). In particular, we leverage m on which, as in MAGELLAN,
we attach one MLP per arm k € K (i.e., computing each arm’s utility separately). For a
given arm k, we use an MLP with two heads: one for estimating R and the other one for

C'. The global utility is obtained by computing Fy(7,k, 3) = BRe(7, k) + (1 — B)Co(T, k).

In Appendix F.2, we discuss variations on this architecture. In particular, we look at how

2Note that, especially in the case where LLMs are used, such a function can be stochastic.
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a single MLP can be used by inserting 5 and k in the LLM’s prompt. See Figure 5.13 for
a schema of our approach.

To train E,, we update the MLPs and 7 (using LoRA adapters (Hu et al., 2022)
which are deactivated when using 7 to solve tasks, so that its performance is not affected).
As in MAGELLAN, we keep a buffer H of the last L tasks along with the chosen arm
and associated observed utility (i.e., a tuple < 7,8, k,U(7, k, ) >). Every F tasks, we
randomly sample a batch from H and train Fy to approximate the sampled outcomes
with a mean squared error loss.

Finally, for any given task 7 and balance 3, we select k using an epsilon-greedy scheme
where, with a probability e = 0.2, k is randomly selected, and, with a probability 1 — ¢,
k = argmaxyex Eo(T, k, ).

5.3.3 Experiments

We now propose to evaluate our method using two experimental setups. First,
we carefully design calculator tools useful for solving addition and division. In these
experiments, the optimal strategy is known. We thus leverage this setup to evaluate (1)
the accuracy of our estimator and (2) the sample efficiency of our online approach (i.e.,
the number of tasks required to converge to the optimal strategy). We then evaluate our
method in a more ecological setting, where our LLM is presented with questions from
MMLU-Pro (Wang et al., 2024d) and receives assistance from multiple larger or more
specialized LLMs.

In all our experiments, we consider and provide results with two different models used
as the "main" LLM 7: Llama 3.2 1B (Grattafiori et al., 2024) and Qwen 2.5 0.5B (Qwen
et al., 2025). Results are repeated with four different random seeds (see Appendix F.1 for
more details).

Convergence analysis on maths problems

In this first set of experiments, we consider a task space 7 made of maths operations.
In particular, we sample tasks from 7 by first selecting an operator among {+, /}, and
then sampling the two operands uniformly between 1 and 50 with six fractional digits.
At every new task, (3 is also randomly sampled in [0;1]. We define R to be a function of
how close an answer is to the expected operation’s answer up to eight fractional digits
(see Appendix F.1.1).

We then propose three deterministic calculator tools (® = {A, B,C}) to our LLM,
all taking as input an operation to compute and returning the result of this operation.
We assign each tool a fixed and task-independent cost C' between 0 and —1, as well as
two task-dependent rounding precisions (one for additions and another one for divisions)
that is used to round each tool’s answer to an operation. We set the costs to be
[—0.85,—0.025, —0.2] (for "A", "B", and "C" respectively) and the rounding precisions
to be [6,4,5] for additions and [4, 5, 6] for divisions.

Our experiment (i.e., 7, R, ®, and C) is designed such that the theoretical optimal
strategy for any 3 is known. In particular, we created our tools and rewards such that it
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is always more rewarding to call a tool than our LLMs (i.e., the problems are too hard for
our Llama 3.2 1B or Qwen 2.5 0.5B to obtain a high reward R). As each tool’s expected
reward R and cost C' is known, we can compute the theoretical optimal strategy given 3.
We provide these strategies in Appendix F.1.1.

We give our experiments a budget of 2048 tasks and perform evaluations every 32
on a fixed evaluation set composed of 32 randomly sampled tasks (16 additions and 16
divisions). Each evaluation consists of 5 trials per evaluation task with greedy sampling
from the bandits. We compare our LLM-based estimator of U with two baselines, both
estimating the per-arm R and C separately using two per-arm averages over the history
of outcomes for each arm. The first baseline is a naive multi-armed bandit that ignores
the task. The second is a contextual bandit that receives the oracle information of a
task’s operation (i.e., addition or division). It thus keeps, for each arm and both R and
C, two histories: one for additions and one for divisions. Access to such information
(i.e., a task’s category, which affects tools’ performance and cost) is an extremely strong
assumption that is inaccessible in more ecological settings. For this reason, this baseline
should be considered as an upper-bound that one cannot use in real-world settings. We
summarize the estimators we compare (see Appendix F.1.3 for more details):

e Ours: U(r,k,B) = BRy(1,k) + (1 — B)Co(T, k).

o Average: U(T,k, ) = B‘H—lkl Yorem, BT k) + (1 — ﬁ)ﬁ > ren, C(7', k), with Hy,
the history for arm k/

e Average per-operator: U(T, k, §) =~ ”BIHil,‘jl >reny B(T, k;)Jr(l—B)ﬁ > ey C(T' k),

with o the operator used in 7, and Hy the history for arm k and operator o.

We begin by investigating the performance of the different estimators evaluated, as
well as how the resulting strategy the bandit converged to compares to the theoretical
optimal strategy. At the end of the 2048 tasks, we evaluate each bandit obtained on our
evaluation set. We report the per-objective evaluation utility (i.e., R and C separately)
with 5 € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} in figures 5.14a and 5.14c, and the
evaluation global utility U for g € {0.2,0.4,0.6,0.8,1} in tables 5.3 and 5.4.

Table 5.3: Llama 3.2 1B - Evaluation utility U after 2048 tasks for
B € {0.2,0.4,0.6,0.8,1} on maths problems. Results are averaged over
32 evaluation tasks and 4 seeds.

Method 8=0.2 B8 =0.4 B=0.6 B=0.8 B8=1.0

OPTIMAL 0.13 (£0.0)  0.29 (£0.0)  0.46 (£0.0) 0.7 (£0.0) 1.0 (40.0)
Average 0.14 (£0.0) 0.3 (£0.0) 0.48 (£0.0) 0.7 (£0.0) 0.92 (£0.0)
Average per-operation 0.14 (£0.0) 0.3 (+0.0)  0.47 (£0.0) 0.7 (+£0.0) 1.0 (£0.0)
Ours 0.14 (£0.0) 0.3 (£0.0) 047 (£0.0)  0.69 (£0.0) 1.0 (£0.0)

The results indicate that our LLM-based estimator matches the optimal utility for
any (8 for Llama 3.2 1B and approaches it for Qwen 2.5 0.5B. Overall, our method obtains
results close to "Average per-operator", indicating the estimator’s ability to capture the
information that tasks’ operator lead to different behavior in accessible tools. As expected,
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Figure 5.14: Per-objective final evaluation utility and regret sam-
ple efficiency over evaluation tasks (see Equation 5.5) for 8 €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} on maths problems. Results are av-
eraged over 32 evaluation tasks and 4 seeds.

"Average" does not lead to an optimal strategy at high 8 values, for which different tools
for additions and divisions are required.

Readers might wonder why, for some 3, a slightly higher performance than the
theoretical optimal one is reachable. This is explained by the fact that, while the
theoretical rounding precision of each tool is known, some randomly generated operations
can empirically lead to results that are not rounded by a tool (e.g., 8.191039-+5.524591
with "calculator-B" leads to R = 1 instead of the theoretical R = 0.8).

We then investigate how fast our estimators converge to the true value of U. For this,
we compute the evolution of regret (w.r.t. the optimal U) over evaluations performed
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Table 5.4: Qwen 2.5 0.5B - Evaluation utility U after 2048 tasks for
B € {0.2,0.4,0.6,0.8,1} on maths problems. Results are averaged over
32 evaluation tasks and 4 seeds.

Method B8 =02 B=0.4 B=0.6 B=038 B=1.0

OPTIMAL 0.13 (£0.0)  0.29 (£0.0)  0.46 (£0.0) 0.7 (£0.0) 1.0 (£0.0)
Average 0.14 (£0.0) 0.3 (£0.0) 0.48 (4+0.0) 0.7 (£0.0) 0.92 (+£0.0)
Average per-operation  0.14 (4£0.0) 0.3 (£0.0) 0.47 (£0.0) 0.7 (£0.0) 1.0 (£0.0)
Ours 0.14 (£0.0) 0.3 (£0.0) 0.47 (£0.01) 0.7 (£0.0) 0.97 (£0.03)

every 32 tasks. We report in Appendix F.3.1 the regret curves of each estimator for
g €{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. We summarize all regrets within a single
figure for both LLMs in figures 5.14b and 5.14d by reporting the following sample efficiency

measure:
1

|7;est |

with £* the optimal choice and T;..; the set of evaluation tasks.

> Ulr k", 8) = Ul k, 8) (5.5)

TETtest

1 T
SE(B,k):l—T;

Figures 5.14b and 5.14d show that our estimator remains close to "Average per-
operator" up to 8 = 0.8 before seeing its sample efficiency decrease. This decrease
is explained by the fact that "calculator-A" is the optimal tool to call only for such
high 8 values, and as evidenced by Appendix F.3.1, our LLM-based estimator tends
to underestimate "calculator-A"’s utility. As a result, the epsilon-greedy exploration
strategy adopted in our bandit requires a higher number of interactions to correct this
underestimation and lead to the optimal strategy (see Figure 5.15). We argue that this
is rather related to an exploration problem than a direct limitation of our LLM-based
estimator. In addition to improving the action-level exploration of our bandit, a closer
look at an active sampling strategy over the contexts (i.e., the maths operations and /)
could have a significant impact, as optimal strategies depend on the context.

Finally, we also investigate how the different architectural choices discussed in Sec-
tion 5.3.2 influence our method’s sample efficiency in Appendix F.2. In particular, we
demonstrate that updating the LLM with LoRA adapters yields mixed results compared
to keeping the LLM unchanged, depending on the specific LLM used. Consequently,
results showed here for Qwen 2.5 0.5B use LoRA adapters, while the ones for Llama 3.2
1B do not.

Overall, our experiments indicate that our method is (1) able to estimate both the
performance and cost of each arm, (2) converges within a few hundred interactions, and
(3) leads to optimal assistance-seeking strategies. In the next section, we demonstrate the
general interest of our approach by applying it to a more ecological experimental setup
by using tasks drawn from MMLU-Pro (Wang et al., 2024d).

Evaluation on MMLU-Pro

We now evaluate our approach in a more ecological setting using question-answering
problems from MMLU-Pro (Wang et al., 2024d), which features 12032 problems organized
in 14 categories ranging from maths to law. We randomly sample problems (and ) from
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Figure 5.15: Evolution of tools called by our approach with Qwen 2.5 0.5B
during evaluation for 8 =1 (averaged over 32 evaluation tasks and 4 seeds).
We report this evolution for divisions (left) and additions (right). While our
approach quickly converged to the optimal strategy (calling calculator-A)
for divisions, 1500 steps are needed for it to converge to calling calculator-A
on additions. In particular, the abrupt change in strategy at 1500 steps
highlights the exploration challenge of our approach.

the "test" split and filter out problems for which the number of characters exceeds 600
to reduce the computational cost, while keeping more than 80% (9834/12032) of the
problems (see Appendix F.1.2). In addition to our main LLM 7 (i.e., either Llama 3.2
1B or Qwen 2.5 0.5B), we use three other LLMs for assistance: Llama 3.1 70B, Qwen
2.5 14B, and Llama expert, a Llama 3.2 1B model fine-tuned on problems belonging to
the "maths" and "physics" categories. See Appendix F.4.1 for the performance of each if
these LLMs on our outcome-based reward R. As the number of possible answers varies
between problems, we randomly pick and propose four possible answers for each problem
(including the right one).

Our outcome-based reward R returns 1 if the selected answer is the right one, 0
otherwise. For the cost reward C', we propose to take inspiration from how LLM providers
estimate the cost of API calls by users: we compute the cost of an LLM’s answer using
a per-token-generated cost (see Appendix F.1.2). As in the previous section, we keep a
zero cost for using our main LLM 7 (i.e., it has no cost for our 7 to keep the task to
itself). We use the "validation" split from MMLU-Pro as our evaluation set Tis;. After
filtering out problems with more than 600 characters, we obtain an evaluation set of
64 tasks (compared to 70 problems before filtering). We allocate to our experiments a
budget of 10240 tasks and perform evaluation every 256 tasks (using a single trial per
evaluation task). As in the previous section, we compare our LLM-based estimator to the
two average-based baselines: a per-arm average ("Average") and a per-arm per problem
category average ("Average per-category"). For the latter, we assume access to each
task’s category, which is not feasible in real-world cases where users provide problems
that are not from known datasets.

In this setting, the theoretical optimal strategy for any 5 value cannot be known
a priori. Therefore, we cannot compute the regret and only report the final observed
evaluation utility over multiple 8 in Figure 5.16, as well as in tables 5.5 and 5.6. We also
report in Appendix F.4 additional results.

The results show that our approach scales to more complex problems, such as the ones
from MMLU-Pro. In particular, our estimator obtains similar (for Qwen 2.5 0.5B) or even
higher (for Llama 3.2 1B) evaluation utility than "Average per-category". These results
are notably explained by the outcome-based reward R of each LLM on MMLU-Pro’s task.
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Figure 5.16: Per-objective evaluation utility after 10240 tasks for g €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} on MMLU-Pro. Results are aver-
aged over 64 evaluation tasks and 4 seeds.
Table 5.5: Llama 3.2 1B - Evaluation utility U after 10240 tasks for 5 €
{0.2,0.4,0.6,0.8,1} on MMLU-Pro. Results are averaged over 64 evaluation
tasks and 4 seeds.
Method B =0.2 B=0.4 B =0.6 B =0.8 B =1.0
Global average 0.13 (£0.0) 0.26 (£0.0) 0.38 (£0.02) 0.53 (£0.01) 0.68 (£0.03)

Average per-category  0.12 (£0.01) 0.26 (£0.02) 0.43 (£0.01) 0.6 (£0.01) 0.79 (40.02)
Ours 0.13 (£0.0) 0.29 (£0.02) 0.45 (£0.02) 0.63 (£0.03) 0.79 (£0.03)

Table 5.6: Qwen 2.5 0.5B - Evaluation utility U after 10240 tasks for 8 €
{0.2,0.4,0.6,0.8,1} on MMLU-Pro. Results are averaged over 64 evaluation
tasks and 4 seeds.

Method B =0.2 B=0.4 B =0.6 B =0.8 B =1.0

Global average 0.13 (£0.0) 0.26 (£0.0)  0.38 (£0.02)  0.53 (£0.01)  0.68 (£0.03)
Average per-category  0.12 (£0.01) 0.26 (£0.02) 0.43 (+0.02) 0.6 (+0.03) 0.76 (40.04)
Ours 0.12 (£0.01)  0.25 (£0.03)  0.41 (£0.03)  0.58 (£0.03)  0.75 (£0.04)

As shown in Appendix F.4.1, the LLMs considered in these experiments exhibit high
variance in their performance within each category (i.e., an LLM’s ability at answering a
question from MMLU-Pro does not only depend on the question’s category). As a result,
"Average per-category" can only converge to the mean performance over each category,
while our approach manages to grasp finer-grained differences between tasks.
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5.3.4 Conclusion

In this work, we proposed a framework for training LLMs to autonomously decide
when to request external assistance. Building on the evidence presented in Section 5.2 that
LLMs can estimate their own functional competence, we leveraged these metacognitive
abilities to guide help-seeking behavior. Crucially, our framework accounts not only
for performance but also for the cost of external assistance, framing help-seeking as a
multi-objective contextual bandit problem. Using only online interactions with tasks,
the LLM learns to estimate both the performance and cost of available options—its
own response and that of external tools or models. These estimations enable adaptive
decisions over whether to solve the task independently or delegate it using a user-defined
scalarization weight to flexibly prioritize performance or cost.

We validated our approach in a controlled setting using math problems and calculator
tools, showing that it converges to the optimal help-seeking strategy for any given
performance-cost trade-off. We then demonstrated the method’s generality by applying
it to MMLU-Pro tasks with external LLMs as assistance, confirming its applicability in
more realistic and diverse environments. Overall, our results show that LLMs can learn
frugal and effective help-seeking strategies purely from interaction, without requiring
annotated datasets or offline supervision.

However, our findings also highlight an important challenge: efficient exploration of
both the assistance space and the contextual space (i.e., tasks and scalarization weights).
In particular, we observed that combining our LLM-based estimator with naive epsilon-
greedy exploration and random context sampling struggles to identify assistive strategies
that are optimal only under specific trade-offs. A promising future direction would be to
couple our framework with active sampling approaches inspired by automatic curriculum
learning. For example, MAGELLAN could be used to guide the selection of tasks and
scalarization weights, accelerating convergence by focusing exploration on regions of high
learning potential.

Moreover, one limitation of our current experiments is the single-turn setup, where
each task is delegated in its entirety to a single option (LLM or assistance). Future
work could extend this approach to multi-step tasks, framing the decision as a sequential
process. An even finer-grained extension could involve token-level decisions—determining
at each token whether to generate or defer to an external tool—as explored in prior work
on tool-augmented LLMs (e.g., (Schick et al., 2023)).

Finally, while this work focused on using metacognitive estimates to identify when a
task exceeds an LLM’s current capabilities, an important next step is to enable the LLM
to learn from the assistance it receives. This would allow it to eventually perform tasks
independently, increasing its functional competence. Integrating such learning would
introduce non-stationarity into the LLM’s performance, but our results from MAGELLAN
suggest that LLM-based estimators can quickly adapt to evolving competence.

5.4 Discussion

In this chapter, we extended the study of functional grounding in LLMs by investigating
how such grounding can be achieved in large and complex goal spaces—settings where
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LLMs face a wide and potentially infinite range of functional competencies to acquire.
We drew inspiration from how humans manage this challenge through autotelic learning:
an intrinsically motivated process by which individuals define, select, and pursue their
own goals.

In Section 5.1, we began by examining the social aspects of autotelic learning. Specif-
ically, we explored how social partners guide children’s learning by providing cues or
descriptions, enabling the mapping between sequences of actions and corresponding goals.
Inspired by prior work in autotelic RL with social partners, we introduced SAC-GLAM,
an extension of GLAM (from Section 3.2) that incorporates off-policy RL and hindsight
relabeling mechanisms. This allowed us to improve sample efficiency in goal-driven
learning settings.

We then turned to the goal prioritization problem in Section 5.2, a central challenge
in autotelic learning. Building upon the automatic curriculum learning literature, we
proposed MAGELLAN—a metacognitive module added to the LLM. This module enables
the LLM to estimate both its competence and Learning Progress across large, language-
defined goal spaces. MAGELLAN addresses key limitations in prior work on LP estimation,
particularly in discrete and unstructured spaces like those expressed in natural language.
Our results demonstrate that MAGELLAN can guide goal selection effectively and,
importantly, that learning to estimate one’s own competence constitutes a form of
grounding in itself—aligning the LLM’s internal representations with the environment’s
structure. Importantly, our work introduces significant contributions to a major challenge
for future LLMs: developing their metacognitive skills (Johnson, 2022). By learning to
track their own LP to scaffold their learning, we showed that LLMs can learn to estimate
and generalize their functional competence over large goal spaces.

In Section 5.3, we built on these metacognitive abilities to tackle a critical real-
world challenge: deciding when an LLM should seek external assistance. This ability
is essential for LLMs embedded in human-facing applications. We showed that, in
addition to estimating their own competence, LLMs can estimate the competence and
associated cost of external assistance on language-specified tasks. We framed assistance-
seeking as a multi-objective contextual bandit problem, where the LLM learns to select
between solving tasks autonomously or delegating them, based on a user-defined trade-
off between performance and cost. Our online learning method enables the LLM to
autonomously discover how to dynamically adapt its strategy across varying budgets and
task distributions through interactions. Together with Section 5.2, this work underscores
the importance of developing metacognitive skills in LLMs: it enables models to express
when assistance is needed or to identify what to learn next. However, the potential of
metacognition in LLMs extends beyond these two applications and represents a critical
avenue for future research.

Despite these advances, the work presented in this chapter assumes that the complete
space of possible goals is known a priori. While we have focused on goal selection and
learning, a crucial next step is the study of goal generation. As discussed by Colas et al.
(2022a), humans use language compositionally to generate new goals by recombining
known concepts. Colas et al. (2020) previously demonstrated an autotelic agent that
used language to invent goals, but their method was restricted to simple grammar-based
heuristics. A major challenge remains in scaling goal generation to the complexity of
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natural language, and LLMs appear as natural candidates for this task. One promising
direction would involve asking the LLM to generate novel goals and filtering them using
MAGELLAN. For instance, Pourcel et al. (2024b) and Pourcel et al. (2024a) showed
that LLMs can be used to generate goals defined with code functions evaluating a
trajectory. However, they both only leverage empirical learnability measures to evaluate
a goal’s interest. Leveraging MAGELLAN would enable the LLM to evaluate a goal’s
learnability without requiring the learner to try the goal. Parallel to this, we also argue
that MAGELLAN’s latent space itself offers a powerful avenue for exploration. For
example, inspired by ALP-GMM (Portelas et al., 2020a), one might directly sample
regions of the latent space with high expected LP and then decode these into natural
language goals.

Moreover, this latent space—capturing both environmental dynamics and the agent’s
functional competence—could support a range of other capabilities. One limitation of our
current goal-selection approach is the multi-armed bandit formulation used for sampling
goals, where each goal is treated as an independent arm. This design requires estimating
LP across the full goal space and relies on naive random exploration to discover progress
niches. Here again, MAGELLAN’s latent space could help. For instance, one might select
only a subset of high-potential goals (e.g., top-n in latent LP score), or cluster goals and
apply a hierarchical curriculum over goal modules, as seen in prior modular approaches
(Baranes & Oudeyer, 2009; Laversanne-Finot et al., 2018; Colas et al., 2019). Similarly,
exploration could be biased toward goals near known high-competence areas in the latent
space. While this list is not exhaustive, we argue that MAGELLAN’s latent space offers
a powerful abstraction that enables LLMs to reason and act over natural language goal
spaces without operating directly at the surface linguistic level. This opens new paths for
scaling functional grounding in LLMs through autotelic open-ended learning.

This chapter concludes our empirical contributions to the functional grounding of
LLMs through online interactions with an environment and intrinsically motivated rein-
forcement learning. The next and final chapter will focus on summarizing this manuscript’s
contribution and discussing further avenues opened up by this research.
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We now move to the last chapter of this thesis. We will first summarize the contri-
butions presented throughout the manuscript before discussing future avenues for the
functional grounding of LLMs.

6.1 Summary of contributions

In our introductory and background chapters, we revisited the long-standing goal of
artificial intelligence: building machines capable of understanding natural language. Today,
large-scale deep learning—particularly through training on massive corpora—dominates
computational approaches to language understanding. While large language models
(LLMs) have demonstrated impressive linguistic capabilities, a growing body of work has
highlighted their limitations. These limitations are often attributed to their passive, purely
statistical learning processes, raising critical questions about whether such models truly
grasp meaning. In parallel, research in human cognition and developmental linguistics has
emphasized the importance of embodied interaction and curiosity-driven, goal-directed
behavior in language acquisition. This perspective supports the notion of grounded
language learning—where meaning arises from interaction with the environment, both
sensorimotor and social. This is especially relevant to functional competence, defined as the
ability to use language to achieve goals. Empirical studies suggest that such competence
emerges from children’s intrinsic motivation to influence their surroundings and reach
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self-defined goals—a principle known as autotelic learning. This manuscript explores
how to bridge the gap between today’s LLMs and grounded language understanding as
described by developmental sciences, with a focus on functional competence. Our central
contribution is the proposal of an interaction-based framework for functionally grounding
LLMs using autotelic reinforcement learning (RL).

In Chapter 3, we introduced the concept of functional grounding—the process by
which the internal representations used in symbol processing are aligned with the external
dynamics of an environment, enabling the agent to control, model, and predict the
environment to pursue goals. Drawing from embodied theories of language acquisition,
we proposed a framework built upon RL (to learn through interaction) and intrinsically
motivated exploration (particularly goal-directed autotelic learning). The remainder of
the chapter focused on the first facet of our framework: functional grounding through
online RL. We introduced GLAM, a functional grounding method based on online RL,
and conducted extensive analyses demonstrating how interactive learning significantly
improves the functional competence of LLMs. Notably, we showed that GLAM specifically
shapes internal representations relevant to functional competence while preserving other
forms of knowledge, such as referential meaning. This representational alignment leads to
better generalization in the face of environmental changes. We also identified limitations
of GLAM in cases of overfitting to prompt formats. However, we demonstrated that
incorporating prompt diversity and contrastive learning leads to more robust competence
and generalizes to downstream tasks like environment question-answering. We further
showed that passive learning methods like behavioral cloning fall short compared to online
RL, highlighting the importance of active interaction as emphasized in developmental
theories.

In Chapter 4, we shifted focus to the predictive aspect of functional grounding,
specifically how it enhances an LLM'’s ability to serve as a world model. Inspired by
how humans, particularly children, build and refine intuitive theories to explain their
environment, we introduced WorldLLM, a framework in which an LLM (1) acts as
a forward model conditioned on natural language hypotheses, and (2) is intrinsically
motivated to explore its environment to refine these hypotheses. Using Bayesian inference
for hypothesis refinement and prediction error as the intrinsic reward, we developed a first
instantiation of this framework. Our results show that WorldLLLM enables the iterative
generation and refinement of human-interpretable theories, which enhance the LLM’s
ability to model and predict environmental dynamics.

Chapter 5 then explored the second facet of our framework: autotelic learning. In
particular, we argued that acquiring general functional competence requires navigating an
effectively infinite space of possible goals. Humans address this through curiosity-driven
exploration, particularly autotelic behavior. Designing such autotelic RL agents with
LLMs poses challenges—chiefly, how to efficiently learn in settings where agents may self-
select goals beyond their current abilities. Drawing from prior work on autotelic RL, we
proposed SAC-GLAM, an extension of GLAM that integrates off-policy RL and hindsight
relabeling. In addition to improving the sample efficiency over GLAM, SAC-GLAM
enables social learning in autotelic settings. We then addressed the task selection problem,
central to autotelic agents. Building on research in automatic curriculum learning,
we introduced MAGELLAN, a novel method that equips LLMs with metacognitive
monitoring—the ability to estimate their own competence. MAGELLAN is the first
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approach enabling efficient estimation of Learning Progress on language-defined goals.
By combining GLAM (for acquiring competence) with MAGELLAN (for prioritizing
high-LP tasks), we demonstrated that LLMs can efficiently navigate vast task spaces. This
is achieved by leveraging semantic relationships between tasks, enabling generalization
beyond observed examples. Our results show that not only does MAGELLAN improve
functional competence acquisition, but the metacognitive estimation process itself further
aligns the LLM’s internal representations with environmental dynamics. Finally, we
extended the role of metacognition by exploring assistance-seeking behavior. We proposed
a novel, purely online framework in which LLMs learn to trigger external help based on
self-assessed competence. Importantly, we introduced a multi-objective setting, where
assistance carries a cost, and proposed a multi-armed bandit solution that balances
task performance and assistance usage according to user-specified preferences. Our
results show that LLMs can learn optimal assistance-seeking strategies under budget
constraints, further demonstrating the value of metacognitive self-assessment for functional
competence.

6.2 Perspectives

In this section, we outline several future research directions opened by the contributions
presented in this manuscript. Our work aimed to advance the development of LLMs
as functionally grounded and autotelic agents—that is, agents capable of acquiring and
refining their functional competence through autonomous, goal-driven interaction with
the environment.

6.2.1 From language models to action models

Throughout this manuscript, we have argued for a perspective that considers LLMs
as embodied agents—systems capable of interacting with an external environment and
updating their internal representations based on those interactions. This framing is
increasingly shared by a growing research community that seeks to leverage LLMSs’
inherent strengths, such as reasoning and planning, in systems designed for real-world
interaction. Such models are now often referred to as action models—general-purpose
or foundation models for agents capable of perceiving, deciding, and acting in complex
environments. Recent advances have demonstrated the potential of both LLMs and
VLMs to control real-world robots (Ahn et al., 2022; Zeng et al., 2023; Huang et al.,
2023; Zitkovich et al., 2023; Shukor et al., 2025). However, despite encouraging results,
significant challenges remain.

Notably, many of today’s action models rely heavily on imitation learning from expert
demonstrations (Jiang et al., 2023b; Brohan et al., 2023; Zitkovich et al., 2023; Shukor
et al., 2025). This raises important questions around data collection: unlike LLMs,
which benefit from massive self-supervised training on readily available internet-scale text
corpora, acquiring large-scale expert demonstrations for sequential decision-making tasks
(particularly in robotics) remains difficult. Open-source efforts such as Shukor et al. (2025)
represent important steps toward building accessible and unified datasets for training

129



130

Discussion

action models, but we are still far from achieving the scale and diversity seen in language
data for pre-training general-purpose action models.

More recently, Zhai et al. (2025) proposed a first attempt at adapting GLAM-style fine-
tuning to VLMs used as action models. Functional grounding of VLMs is a particularly
urgent challenge given evidence that VLMs often underperform LLMs in terms of functional
abilities (Wang et al., 2024a; Aissi et al., 2025). While initial results demonstrate that fine-
tuning VLMs using RL is feasible, performance gains remain modest—even when preceded
by imitation learning—as highlighted by Aissi et al. (2025). Importantly, these studies
have so far been confined to simulated environments. Scaling these approaches to real-
world robotics introduces an additional set of obstacles. Most traditional RL algorithms
suffer from poor sample efficiency, rendering them unsuitable for direct application in
physical systems. As a result, the robotics community has largely adopted sim-to-real
transfer strategies, where policies are first trained in simulation before being adapted to
real-world platforms (Zhao et al., 2020). In conclusion, while equipping LLMs and VLMs
with real-world embodiment offers a promising path toward grounding their functional
competence directly in physical environments, substantial research is still needed.

6.2.2 On functional grounding and reasoning

Recent research has increasingly emphasized the role of reasoning in enhancing the
performance of LLMs, particularly in settings where agents must make decisions or
interact with an environment. A number of works have demonstrated that reasoning can
serve as a form of internal planning, guiding the model toward better actions by leveraging
its internal knowledge and commonsense priors (Yao et al., 2022; Zeng et al., 2023; Huang
et al., 2023; Zhai et al., 2025). This approach has the appealing advantage of bypassing
the need to explicitly learn a forward model through interaction, as traditionally done
in model-based RL, instead exploiting the LLM’s pre-trained internal representations to
simulate outcomes. However, as we showed in Chapter 4, this form of internal simulation
can be limited. Our proposed framework, WorldLLM, demonstrated that an LLM’s world
model can be substantially improved through actual interactions with the environment.
This opens an exciting direction for future research: investigating the synergy between
reasoning-based planning and interaction-based world modeling.

Another critical open question is how to improve the reasoning abilities themselves,
especially in settings where no gold-standard answer or plan is available. While several
RL approaches have successfully improved LLMs’ reasoning in domains with well-defined
supervision—such as mathematical problem solving (Uesato et al., 2022; Havrilla et al.,
2024; DeepSeek-Al et al., 2025)—these settings do not generalize to open-ended sequential
decision-making tasks, where the optimal trajectory is often unknown. An emerging
solution to this challenge is found in token-level RL for LLM agents, where each generated
token is treated as an action (Wen et al., 2024a,b; Zhou et al., 2024b). This perspective
provides a unified framework that bridges action-level approaches (e.g., GLAM) with
token-level methods used in RLHF and reasoning-focused fine-tuning (Ouyang et al., 2022;
Ramamurthy et al., 2023; Gulcehre et al., 2023; Ahmadian et al., 2024). By treating both
reasoning and environmental actions as part of the same trajectory, token-level RL offers
a principled way to optimize both. However, this setting introduces substantial challenges:
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in particular, reward sparsity, since a reward from the environment is only provided at
the end of a long reasoning sequence. Additionally, exploring the vast space of possible
reasoning chains remains an open problem, especially when intermediate reasoning steps
cannot be supervised.

6.2.3 Beyond reinforcement learning

Throughout this research, we focused primarily on online RL as a mechanism for the
functional grounding of LLMs. However, aligning an LLM’s internal representations with
the dynamics of its environment can be achieved through alternative, and often comple-
mentary, mechanisms. In particular, our proposed WorldLLM framework demonstrated
that in-context learning—combined with intuitive theories—can functionally ground an
LLM’s internal world model without parameter updates. This ability to adapt based
on examples or information embedded directly in the prompt is one of the defining and
most powerful features of LLMs (Brown et al., 2020). Beyond simple task instruction,
in-context learning has been increasingly leveraged to influence LLM behavior through
interaction with an environment. Several recent works have shown that LLMs can adapt
based on feedback received following their actions, using this feedback to improve their
strategy (Huang et al., 2023; Zeng et al., 2023; Yao et al., 2022; Wang et al., 2023b,a,c).

These methods suggest a form of dynamic adaptation akin to episodic control, a
learning mechanism inspired by the human ability to recall and reuse high-reward ex-
periences stored in memory (Pritzel et al., 2017; Hansen et al., 2018; Hu et al., 2021).
While classical episodic control approaches have typically focused on reproducing stored
high-reward trajectories, LLMs introduce the possibility of reflecting on these past expe-
riences to derive more abstract lessons or strategies. This has been explored in recent
work through LLM-based reflection mechanisms, where models are prompted to analyze
their past behaviors to improve future decisions (Shinn et al., 2023; Chen et al., 2024;
Yao et al., 2024). In this context, episodic control in LLMs moves beyond imitation,
offering a flexible, memory-driven approach to adaptation that can complement slower,
gradient-based learning.

Moreover, while this manuscript has focused on functional competence in simulated
physical environments, a broader view of functional grounding includes the ability to pre-
dict, influence, and collaborate with social partners, such as human users. As highlighted
by Roy (2005b), this social dimension is core to the notion of functional competence. How-
ever, grounding through social interaction imposes new constraints: unlike simulations,
human-centered interactions are costly and sparse, making sample-efficient adaptation
crucial. In this context, exploring fast, non-parametric update mechanisms such as
episodic control, reflection, and in-context adaptation becomes essential. Future research
should investigate how these mechanisms can be systematically combined with RL to
ground functional competence in settings involving partners.

6.2.4 Towards self-generated exercises

Throughout this manuscript—particularly in Chapter 5—we explored and proposed
methods for building autotelic LLMs. The defining characteristic of autotelic agents is
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that they self-generate the problems they learn to solve. As discussed, this self-generation
process is neither purely random nor entirely individual: in humans, learning is shaped by
a range of constraints, including caregiver scaffolding during infancy, cultural artifacts and
values (Bruner, 1990), and intrinsic signals such as Learning Progress. In contrast, most
current LLMs are trained via imitation learning on human-curated datasets or are aligned
with human preferences via RLHF or supervised fine-tuning. Their learning problems are
pre-defined and static. Enabling LLMs to self-generate meaningful exercises opens the
door to open-ended learning, allowing models to transcend the limited scope of existing
datasets and discover new problems that foster further growth in functional competence.

As a step in this direction, we introduced MAGELLAN, a method through which
LLMs can develop metacognitive abilities by estimating their competence and Learning
Progress across large goal spaces. These estimations can be used to scaffold the agent’s
learning process by prioritizing tasks with high expected progress. However, MAGELLAN,
as presented, assumes a closed set of goals known a priori. Moving toward true open-
endedness will require LLM agents to generate novel goals themselves. One natural
extension is to use MAGELLAN’s competence and Learning Progress estimations as a
signal for goal generation. In the context of continuous task spaces, numerous automatic
curriculum learning approaches have been proposed to dynamically generate goals based
on difficulty, regret, or other learning signals (Florensa et al., 2018; Racaniere et al.,
2020; Dennis et al., 2020; Jiang et al., 2021a; Parker-Holder et al., 2022). However, goal
generation in natural language introduces unique challenges.

In particular, starting from a randomly initialized language goal generator is likely to
be sample-inefficient. Recent work like OMNI-EPIC (Faldor et al., 2025) has shown that
LLMs can be used to generate sequences of tasks, with each candidate task then accepted
or rejected based on an interestingness criterion modeled by an LLM. This iterative
rejection sampling framework could be adapted using MAGELLAN’s Learning Progress
estimates as a principled selection signal, ensuring that generated tasks meaningfully
advance the LLM’s competence. A similar framework could also be applied to code-
defined goals. For instance, Pourcel et al. (2024b) used LLMs to generate a dataset
of diverse and interesting code puzzles through a three-step process: (1) generating
a new puzzle conditioned on previously generated ones, (2) attempting to solve it to
assess its interestingness, and (3) assigning it a category label to enable diversity search
across puzzle types. In parallel, Pourcel et al. (2024a) proposed using LLMs to generate
programs that define reward functions for autotelic RL agents. By maintaining a buffer of
empirically learnable reward functions, they showed that LLMs can guide the progressive
acquisition of increasingly complex behaviors. In both of these approaches, MAGELLAN
could serve as a powerful alternative to the interestingness heuristics currently used.
Moreover, MAGELLAN induces a latent embedding space of goals, in which proximity
reflects similar levels of competence or learning potential. This latent space could be
directly sampled to identify new, promising goals. A key open question then becomes:
how can we map these latent samples back into valid, interpretable natural language
tasks?
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6.2.5 Towards LLMs capturing a causal model of the world

When introducing the concept of functional grounding, we emphasized the importance
of modeling environmental dynamics—a necessary ability for functional competence.
More broadly, a core property expected from LLMs, especially as they are increasingly
integrated into softwares supporting users’ daily tasks, is the capacity to build and leverage
a model of the world that aligns with human expectations and physical reality. Evaluating
the extent to which LLMs model the world has become an active research focus in recent
years (Hao et al., 2023a; Li et al., 2023a; Vafa et al., 2024; Ding et al., 2025; Ying et al.,
2025). Despite their impressive performance, we argued in the introduction and Chapter 2
that LLMs’ lack of grounding in the real world may fundamentally limit their capacity
to build reliable world models. While some models appear to handle physical concepts
adequately, it remains unclear whether such abilities reflect an internal causal model
that supports causal inference, or if they result from surface-level statistical correlations
learned during pre-training.

To address this gap, the present research proposed several contributions aimed at
improving LLMs’ world modeling abilities. In our large-scale study of GLAM, we showed
that LLMs fine-tuned via online RL not only demonstrated stronger functional competence
but also improved performance on environment-specific question answering—such as
identifying which object is best suited to solve a particular task. In WorldLLM, we
showed that prompting LLMs with natural language theories enhanced their forward
modeling abilities. In MAGELLAN, we demonstrated that training LLMs to estimate their
own competence leads to latent representations that reflect the structure of environmental
goals—grouping similar dynamics together. However, whether these internal structures
constitute true causal models remains an open question. For instance, while WorldLLM
relies on natural language theories, it is unclear whether the LLM is capable of reasoning
causally from them. To assess this, the question-answering metrics used in our GLAM
evaluation could be extended to explicitly test causal inference, such as reasoning under
interventions or counterfactual scenarios, providing a clearer window into whether a
functionally grounded LLM develops causal understanding.

Moreover, while the discussion above focused on physical causal models, humans
also build causal models of social environments. The ability to model others—referred
to as Theory of Mind—is a foundational aspect of human cognition and closely tied to
functional competence in social settings (Tomasello, 2019; Roy, 2005b). A promising
avenue for future work is to explore whether functional grounding, when applied to
social interactions, can lead LLMs to acquire models of other agents’ beliefs, goals, and
intentions. This could be investigated through interaction with both artificial peers (e.g.,
other LLMs) and natural users.

6.2.6 Metacognition, alignment, and safety

LLMs are increasingly embedded into real-world applications, with the recent emer-
gence of models equipped with the ability to act through web search, tool use, or API
calls significantly extending their capabilities. However, a key challenge is to evaluate and
control the safety of these applications (Frangois et al., 2025). One major concern lies in
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the cultural values and biases embedded within these models (Bender et al., 2021; Gallegos
et al., 2024). As LLMs learn from massive corpora of human-generated data, they may
replicate or amplify societal biases. Another critical issue is the generation of factually
incorrect or fabricated content, commonly referred to as "hallucinations." Studies such as
Hill (2023) and Abdelghani et al. (2025) have shown that users—particularly children and
students—can be easily misled by such false content. This raises urgent ethical concerns,
especially in educational and decision-support settings. To mitigate these risks, a key
goal is to align LLMs more closely with the real world and with human expectations.
This alignment includes not only grounding models in physical reality, but also ensuring
their behavior respects human values and norms. In this thesis, we explored one specific
axis of alignment: the functional grounding of LLMs through interaction-based learning.
By aligning an LLM’s internal representations with the dynamics of the environment it
operates in, functional grounding holds promise for reducing hallucinations and improving
reliability. However, as discussed in the previous section, whether such grounding leads
to the formation of explicit causal models of the world remains an open question

Parallel to this, another promising avenue for improving LLM safety is the development
of metacognitive abilities—the capacity of a model to monitor and assess its own perfor-
mance (Johnson, 2022; Johnson et al., 2025). One of the key risks with current LLMs is
their inability to signal uncertainty or recognize the limits of their competence, leading
users to misplace trust in incorrect outputs (Steyvers & Peters, 2025). Augmenting LLMs
with metacognitive abilities is essential for (1) alerting users when they are likely to fail,
(2) helping users understand LLMs’ responses, and (3) assisting engineers in diagnosing
and improving the system’s capabilities. In Chapter 5, we proposed and empirically
validated a framework for endowing LLMs with metacognitive monitoring abilities. We
demonstrated that LLMs can learn to self-assess their functional competence through
interaction, and use these assessments to scaffold their own learning (by prioritizing high
LP tasks) and to determine when external help is needed. Nevertheless, our work focused
on a specific aspect of metacognition: the ability to predict one’s likelihood of success on
a task. Future research could investigate broader metacognitive capacities in LLMs.

6.2.7 The quest of autotelic agents

While this manuscript primarily focused on grounding the functional competence
of LLMs through autotelic RL, the contributions presented here can also be viewed as
advancing the broader quest of building autotelic agents. In this perspective, LLMs are
key architectural components within more general autotelic RL frameworks. Our results
demonstrate several ways in which LLMs can enhance the capabilities of autotelic agents.
For instance, GLAM and SAC-GLAM showed that LLMs, when fine-tuned with online
RL, can serve as efficient policy learners, significantly outperforming randomly initialized
networks in text-based environments. In MAGELLAN, we demonstrated that LLMs can
estimate Learning Progress and enable efficient goal-selection for natural language tasks.
Additionally, as discussed in Section 6.2.3, the unique in-context learning and reasoning
capabilities of LLMs suggest their potential for fast policy adaptation, in particular via
episodic control—retrieving and recombining past interactions to guide future behavior.
We recently proposed an example of such an LLM-augmented autotelic agent with
HERAKLES (Carta et al., 2025), a hierarchical autotelic RL framework in which an
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agent incrementally learns a growing repertoire of compositional skills. In HERAKLES,
an LLM is used to (1) plan which previously learned skills to compose (via GLAM), and
(2) guide goal selection (via MAGELLAN). Moreover, a MAGELLAN estimator is also
used to constrain the space of skills the LLM can compose (see Figure 6.1).
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Figure 6.1: Schematic overview of HERAKLES, an autotelic hierarchical
RL agent (Carta et al., 2025). The high-level policy—an LLM fine-tuned
with GLAM—selects skills based on goals sampled by MAGELLAN. These
skills are passed to a low-level policy, a neural network trained via online RL,
which executes them in the environment. A competence estimator monitors
the low-level policy’s ability to execute each skill and is used to constrain
the high-level policy’s action space to executable skills. As MAGELLAN
samples new goals, those successfully achieved by the low-level policy are
compiled into new skills, progressively expanding the agent’s repertoire.

More broadly, LLMs can be seen as “culture models” for autotelic agents—encoding
commonsense knowledge, implicit values, and high-level priors shaped by human discourse
(Kovac et al., 2024). This opens new avenues for replacing the handcrafted expert
knowledge typically used in autotelic RL. For example, early work by Colas et al. (2020)
relied on a manually defined goal grammar and handcrafted combination rules. With
LLMs, such constraints can now be learned or generated dynamically. Importantly, this
cultural grounding can also guide exploration: while naive autotelic agents treat all
learnable goals as equally valuable, LLMs provide a means of prioritizing or filtering goals
in line with human preferences or usefulness. For instance, OMNI (Zhang et al., 2024b)
illustrated how an LLM can act as a filter to constrain the goal space to “human-interesting”
goals, steering the agent’s exploration towards more meaningful outcomes.

This LLM-guided autotelic learning loop opens especially exciting perspectives in
the domain of automated scientific discovery. For this, Intrinsically-Motivated Goal
Exploration Processes (IMGEPs) have already demonstrated that autotelic agents can
generate novel hypotheses and discoveries in artificial life (Reinke et al., 2020; Etcheverry
et al., 2020), biology (Etcheverry et al., 2024), chemistry (Grizou et al., 2020), and physics
(Falk, 2024). In parallel, LLMs have recently been investigated as tools to automate parts
of scientific workflows in machine learning (Lu et al., 2024; Yamada et al., 2025) and
artificial life (Khajehabdollahi et al., 2025). Studying how LLMs can provide guidance to
autotelic agents for automated scientific discoveries is a promising future direction.

135



136

Discussion

6.3 Conclusion

In our introductory chapter, we posed a central question: can usage-based, grounded
theories of language acquisition—emphasizing intrinsically motivated sensorimotor inter-
actions—be reconciled with distributional semantics approaches, and in particular LLMs?
To explore this, we proposed augmenting LLMs with an embodiment: enabling them to
interact with external environments and update their internal representations through
these interactions. Our focus was on aligning LLMs’ functional competence via autotelic
RL, empowering them to select, pursue, and learn their own goals. Through this lens, we
demonstrated that embodied, interaction-based learning holds significant promise—not
only for grounding functional competence, but also for improving world modeling and
metacognitive abilities in LLMs.

However, despite these encouraging results, the broader question remains open: can
embodying LLMs truly bridge the gap between grounded developmental theories and
purely statistical language models? In human development, linguistic structures and
cognitive representations co-emerge from early sensorimotor experiences—long before
verbal language is acquired. That is, grounding is not added after but is constitutive
of learning itself. In contrast, the present research explored a posteriori grounding:
aligning the internal representations of LLMs that were originally shaped through passive,
statistical learning alone. This contrast raises a fundamental question for future research:
Is such post hoc grounding sufficient—or must embodiment be integrated into pre-
training itself? Ome possible direction lies in hybrid learning regimes, where LLMs
alternate between imitation (e.g., causal language modeling) and interactive sensorimotor
experience during training. Such approaches may offer a path forward in building language
agents whose representations are meaningfully grounded in the world they act within.
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Environments

A.1 Environments

We extend the BabyAlI platform (Chevalier-Boisvert et al., 2019) and create a text-only
version named BabyAl-Text that encapsulates BabyAl and returns linguistic observations.
Figure A.1 explains our environment.
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"You see a yellow ball 1 step left", "You see a yellow ball 1 step forward", "You see a wall 2 steps right",
"You see a green key 2 steps right", “You see a yellow box 1 step right and 2 steps forward" "You see ared key 1 step left and 2 steps forward",
"“You see a blue ball 3 steps right" "You see a yellow box 1 step right and 2 steps forward"

‘ — “turnleft” ‘ —> “pick up”

RL agent RL agent

Figure A.1: An illustration of how our BabyAI-Text environment encapsulates
BabyAI. We keep the inner minigrid environment as well as task descriptions
and reward but map the partial view of the agent to a text description.

A.1.1 BabyAlI

BabyAI Chevalier-Boisvert et al. (2019) is a language-conditioned environment where
the agent has a limited number of steps to complete a language goal. This platform relies
on a gridworld environment (MiniGrid) to generate a set of complex instructions-following
environments. It has been specifically designed for research on grounded language learning
and related sample efficiency problems. The gridworld environment is populated with the
agent and objects (of 6 possible colors): boxes, balls, doors, and keys. These entities are
placed in rooms of 8 x 8 tiles that are connected by doors that can be locked or closed. The
grid is procedurally generated (i.e. objects populating an episode are randomly chosen
and their position, as well as the agent’s position, are also random). Some of the objects
are useful for the task to achieve, while others are considered as distractors (objects can’t
be crossed, the agent has to either bypass them or move them). The agent can do 6
primitive actions: turn left, turn right, go forward, toggle, pick up to solve the
language instruction (for instance Pick up the red box). To observe its environment,
the agent has access to a partial view (i.e. it only sees the objects that belong to the

139



140

GLAM

6 x 6 grid in front of it). BabyAl proposed to access this partial view through a symbolic
mapping that returns 3 matrices of size 6 x 6. The first matrix contains which object
is in the observed cells, the second gives the color of these objects, and the last one
their state (e.g. locked, open). When the agent completes the task after N steps, it
receives the reward ry =1 — 0.9%, where H is the maximum number of steps. During
training, we multiply all rewards by 20 to ensure a good propagation of the rewards as per
(Mirchandani et al., 2021). If the agent has not completed the task in the current step,
the reward is 0. Additionally, BabyAl also provides visualization tools for experimenters
to observe the grid and better grasp agents’ behaviors.

A.1.2 BabyAlI-Text

BabyAl-Text is a textual environment that encapsulates BabyAl and provides a
description of each observation instead of a symbolic representation. A textual description
consists of a list of template descriptions with the following structure:

e "You see a <object> <location>" if the object is a key, a ball, a box or a wall.
e "You see a(n) open/closed door <location>" | if the agent sees a door.

e "You carry a <object>", if the agent carries an object.

The <object>, is composed of an adjective (among 6 possible colours: red, blue, green,
yellow, grey, purple) and a noun (among 4 possible: key, door, box, ball). The <location>
is given as the number of steps right, left, and or forward from the agent to the object.
We illustrate this in the leftmost observation of Figure A.1 where the "yellow box" is "2
steps left and 1 step forward" from the agent (the red triangle). Thus an object described
as "1 step forward" is right in front of the agent that does not need to go forward if it
wants to pick that object. Walls of the room are the only spatially extended objects in
BabyAlI-Text. We give their location at the closest distance to the agent. See the leftmost
image of Figure A.1 for an example where the agent sees a wall "2 steps forward" and
another wall "2 steps left". All of the choices for describing the environment constitute
what we call the geometry of the environment, that the agent has to ground in order to
succeed in the task. The presence of a fine grained geometry (with distances in steps
to the different object in the room) is one of the main differences from other textual
games such as TextWorld or ScienceWorld where all objects in a room are not spatially
described.

Thanks to this extension, BabyAl-Text resembles a TextWorld (i.e. provides text
descriptions of the observation and executes text commands) while keeping the inner
minigrid environment along with BabyAl’s tasks and visualization tools. Moreover, as
our extension simply provides an alternative mapping of observations, one can both use
and compare agents that either expect text-only observations (with BabyAI-Text) or
symbolic observations (with BabyAlI).

A.2 Additional results



Additional results

A.2.1 Per-task success rate

In order to get a better understanding of our agent’s capabilities, we report in
Figure A.2 the success rate on each task from our “no-change” evaluation in Figure 3.5
(assessing the post-training performance of agents on 1000 test episodes of our mixed
setup) of Flan-T5 and GFlan-T5. These results (with 4 seeds after 1.5 million training
steps) show that our functional grounding leads GFlan-T5 to master the GoTo and PickUp
tasks while improving results on PutNextTo and Pickup Then/AfterPickup. However,
GFlan-T5 has not found yet any robust strategy for the OpenDoor task (being the hardest
as the agent must find the right key and discover that the action “toggle” opens the door)
in the relatively short allocated time.

1.0
I Flan-T5
B GFlan-T5
0.8
0.6
0.4
0.2
0.0 | - . .I
(e} O L O
e‘;\ .@Q -\ié ® «‘02'
\0 < (\0 Q
Q R
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Figure A.2: Per-task success rate for the 1000 evaluation trajectories per-
formed in Figure 3.5.

A.2.2 Averaging success rate over the tasks

In our environments, goals are divided into five types of tasks of varying difficulty.
Each goal is sampled randomly from the tasks when the environment is reset. We obtain
the success rate for the goals at update u by averaging over the completed trajectories
during the collection phase. As several environments run in parallel, goals from easier
tasks that are completed more quickly, such as GoTo and PickUp, tend to be more
represented in the buffer.

A.2.3 Textual vs symbolic representation

In order to understand how the structure of the observation (i.e. either symbolic
image using 3 matrices containing integers defining respectively the object seen, its color

141



142

GLAM

and property if any or text) influences the success rate of an RL agent, we compare the
DRRN and Symbolic-PPO respectively trained on BabyAl-Text and BabyAlI on the Go
To Red Ball task. In this task, the agent has to go in front of a red ball in 1 room
without any distractor (i.e. the task never changes, only the position of agent and red
ball do). The task has been voluntarily chosen as trivial so that the main difference
only comes from the way the information is given to the agent. Both the DRRN and
Symbolic-PPO agents have a similar number of parameters (1M), they both use recurrent
layers to deal with partial observability and use the canonical action space.

Average Success Rate
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0.5 4
0.4 4

0.3 4 — DRRN_3 actions
PPO_GTRB

0.2+
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Figure A.3: Average success rate for DRRN and Symbolic-PPO on the Go
To Red Ball task with standard deviation over two random seeds. The PPO
receives symbolic information and the DRRN gets textual observations.

Contrary to what one might assume in Figure A.3 the PPO agent converges faster
than the DRRN agent on this trivial task. Thus, symbolic observations make the learning
easier for the agent. We conclude that even if language contains high-level information,
understanding the link between spatial information and language is far more difficult
than using symbolic information given in a matrix. Indeed, the matrix already contains a
geometric bias favorable to the agent. We also want to point out that the DRRN is an
off-policy RL method compared to PPO (which is on-policy) and that consequently, the
DRRN was expected to be, by-design, more sample efficient.

A.2.4 Impact of pre-training

We test how pre-training allows efficient fine-tuning of our LLM. We vary which
weights of Flan-T5 are kept pre-trained as well as how we compute actions’ probability
(i.e. either using our method reusing language modeling heads or using new action heads
with an MLP). We evaluate the performance of 5 models:

e The full LLM is pre-trained and language modeling heads are used for actions
probability: GFlan-T5 (Figure A.4)

e The full LLM is pre-trained and new action heads are used: AFlan-T5 (Figure A.5)
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e Only the embedding layer’s weights are kept pre-trained (the rest of the LLM is
randomly initialized) and new action heads are used: NPAE-Flan-T5 (Figure A.6)

e Only the embedding layer’s weights are kept pre-trained (the rest of the LLM is
randomly initialized) and the (randomly initialized) language modeling heads are used
for actions’ probability: NPE-FlanT5 (Figure A.7)

e All LLM’s weights are randomly initialized and action heads are used: NPA-Flan-
T5 (Figure A.8)
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Figure A.4: GFlan-T5: We use the Flan-T5 architecture and add a value
head. We initialize the agent with the pre-trained weights (framed in green
in the diagram) including its language modeling heads to compute action
probabilities. The weights of the value head are initialized randomly. GFlan-
T5 stands for: grounded Flan-T5.
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Figure A.5: AFlan-T5: We use the Flan-T5 architecture but replace the
language modeling heads with action heads (that return the probability for
each action) and add a value head. We initialize the embedding, the encoder
and decoder parts of the agent with the pre-trained weights (framed in green
in the diagram) and the other weights randomly. AFlan-T5 stands for action
heads Flan-T5.
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Figure A.6: NPAE-Flan-T5: We use the Flan-T5 architecture but replace
the language modeling heads by action heads and add a value head. We
initialize the embedding with the pre-trained weights (framed in green in
the diagram) and the other weights randomly. NPAE-Flan-T5 stands for:
non-pre-trained with action heads and pre-trained embedding Flan-T5.
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Figure A.7: NPE-Flan-T5: We use the Flan-T5 architecture and add a value
head. We initialize the embedding with the pre-trained weights (framed in
green in the diagram) and the other weights randomly. NPE-Flan-T5 stands
for: non-pre-trained with pre-trained embedding Flan-T5.
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Figure A.8: NPA-Flan-T5: We use the Flan-T5 architecture but replace
the language modeling heads with action heads and add a value head. We
initialize all the weights randomly. NPA-Flan-T5 stands for: non-pre-trained
with action heads Flan-T5.
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Figure A.9 compares the training curves of the agents above on the task Go To
<object>. GFlan-T5 has unsurprisingly the best results as it is fully pre-trained. More
surprisingly, AFlan-T5 takes more steps than expected to perform better than the non-
pre-trained networks (250000 frames). We hypothesize that during the pertaining, the
last transformer layer encodes information in a space designed for language modeling
heads (=~ 32000 heads) which is not convenient for the non-pre-trained 6 actions heads.
Indeed, AFlan-T5 has to make sense of this space before getting the benefits of having
the rest of the network trained. This could explain why it suddenly performs better after
250000 steps. Comparing NPAE, NPA and NPE Flan-T5, we see that the presence of an
action head is crucial for non-pre-trained networks. Indeed, the NPE fails to learn in the
given number of steps compared to NPAE and NPA that have similar learning curves.
A possible explanation is that for NPE, the information flow that is backpropagated
through the gradient is really small due to the huge number of language modeling heads
and the few number of tokens updated (< 100). On the opposite, GFlan-T5, that also
uses language modeling heads but is fully pre-trained, only needs a light fine-tuning for
the necessary tokens explaining its high success rate and sample efficiency.
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Figure A.9: Average success rate of varying pre-trained weights and scoring
method with standard deviation over two random seeds. We train all LLMs
on the Go to <object> task in 1 room, with 8 distractors, the 6 canonical
actions and using Flan-T5 large (780 million parameters) as architecture.

A.2.5 Impact of the size of the LLM

The capacities of LLMs depend strongly on their size and many properties of these
networks only appear when they are large enough (Chowdhery et al., 2022; Wei et al.,
2022). We consequently test the influence of the size of the LLM on our results by training
3 different GFlan-T5 (as well as the DRRN and Symbolic-PPO baselines) on the Go to
<object> task for 400.000 steps: GFlan-T5 small (80 million parameters), GFlan-T5
large (780 million parameters) and GFlan-T5 XL (3 billion parameters).

We show the evolution of average success rate over 2 seeds in Figure A.10 highlighting
that pre-training prior knowledge only looks impactful when the network is large enough.
The difference between the learning properties of small and large models relates to the
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definition of an emergent behavior given by Wei et al. (2022): "an ability is emergent if it
is not present in smaller models but is present in larger models”. Beyond the data on
which a model has been trained, the size of this model seems crucial for the acquisition of
new knowledge about relations between entities during the fine-tuning phase.
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Figure A.10: Impact of the size of the LLM on online RL fine-tuning. We
conduct the tests with the Go to <object> task in 1 room, with 8 distractors.
We measure the evolution of average success rate over 2 seeds with standard
deviation for GFlan-T5 small (80 million parameters), GFlan-T5 large
(780 million parameters) and GFlan-T5 XL (3 billion parameters). DRRN,
NPAE-Flan-T5-large and Symbolic-PPO are given as baselines.

A.2.6 Impact of varying action space and distractors

In this section, we detail the studies about the impact of varying the action space and
the number of distractors.

Impact of the dimension of the action space

One of the expected advantages of pre-trained LLMs in RL is that they avoid the
Tabula-Rasa paradigm and already have useful biases. In these experiments, we test
the sensibility of LLMs to the size of the action space by using 3 different action spaces
(restricted, canonical, augmented) when trained on the Go to <object> task.

We conduct the tests in an environment with 1 room, 8 distractors and in Figure A.11
report full learning curves used to draw Figure 3.4a. We show that GFlan-T5 efficiently
handles the different action spaces compared to the other agents. Its initial biases are
particularly helpful when the action space is large. Indeed, when we look at the difference
of sucess rate between GFlan-T5 and the second best-performing agent after the 50000
first steps, there is almost no difference in the restricted settings and 0.35 in the augmented
settings. That supports the hypothesis that the results are due to LLMs’ ability to discard
useless action quickly at the beginning of fine-tuning.
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Figure A.11: Learning curves for the agents on the Go To task for different
sizes of action space (Restricted: 3 actions, Canonical: 6, Augmented: 9,
with only the 3 actions that are useful). The success rate is given over 2
seeds along with standard deviation.

Impact of the number of distractors

In Figure 3.4b we have shown that LLMs are less sensitive to variations on task
complexity by plotting the evolution of sample efficiency (Equation (3.3)) for different
numbers of distractors: 4, 8 and 16. In Figure A.12 we report the full learning curves. We
observe that Symbolic-PPO’s performances collapse when we go from 4 to 16 distractors
whereas GFlan-T5’s performances remain similar. NPAE-Flan-T5’s performances are also
non-affected by the change in the number of distractors but in this case we suppose it is
because it cannot learn the task in 400000 steps.
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Figure A.12: Learning curves for the agents on the Go To task for different
number of distractors (4, 8, 16). The success rate is given over 2 seeds with
standard deviation.

A.2.7 Robustness to domain-specific vocabulary

In Section 3.2.4, we have shown the robustness of our method to random vocabulary
for words that do not influence the grounding of actions (in our case, the objects and their
colors). Nonetheless, one can imagine an environment with a specific vocabulary where
common words are used to describe particular technical terms with possibly very different
meanings. To verify the impact of such environment on our training process, we trained
GFlan-T5 on the GoTo task where the actions “turn left” and “turn right” are flipped
(i.e. using “turn left” makes the agent rotate to the right, and the opposite for “turn
right”). Figure A.13 shows that, while the prior knowledge of the LLM leads to poorer
performance at the very beginning of training (as the LLM must learn to rotate left and
right), GFlan-T5 converges at a similar speed than in the non-flipped environment. This
result hints robustness that our grounding method for LLMs can adapt to domain-specific
vocabularies.
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Figure A.13: Comparison of the average success rate over training for GFlan-
T5 on the Go To when the actions “turn left” and “turn right” are flipped
("-reverse"). The success rate is given over 2 seeds with standard deviation.

A.3 Evolution of actions distribution on evaluation prompts

To better grasp the skill acquisition dynamics when performing online RL grounding
on GFlan-T5 in the multi-task setting of Section 3.2.4, we test at each update the LLM on
11 prompts listed in Table A.1. We plot in Figure A.14 the evolution of action probabilities
outputted by our LLM aiming to partially decipher the changes in the LLM and visualize
which skill is acquired when.

Prompts 0 and 1 are simple navigation tasks. The agent has to move in the direction
given in the prompt. Looking at the corresponding plots we observe two things: first,
the optimal behavior is learned in less than a hundred of updates, even for prompt 1 for
which the bias at the beginning is both wrong and high. Second, from the beginning,
only the navigation actions (turn left, turn right, go forward) relevant for the Go
To <object> task have a high probability. Therefore, the Flan-T5 780M seems to already
have useful biases for navigation and is able to quickly update or correct them through
interactions.

We observe similar useful biases with the Pick Up <object> task (using prompts 5
and 6). Indeed, at the beginning, both the pick up action and navigation actions already
have a high probability.

We can see that the agent struggles to ground the geometry of the environment with
prompts 6 and 7. Indeed, it has to understand that an object described at "1 step
forward" is in front of it such that it can pick it up or drop it directly without moving
further. While GFlan-T5 eventually seems to understand it, it still shows some hesitation
as proven by the fact that it gives almost the same probability to go forward and pick
up or drop for the prompt 7 at the end of training (see Figure A.14).
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We also verify how GFlan-T5 understands temporal constructions such as doing an
action A then an action B (prompt 8) or doing an action A after doing an action B
(prompt 9). These two test prompts are exactly the same except for the goal where
prompt 8 uses "then" and prompt 9 uses "after" to link the two actions. We observe that
when the order of actions in the task specification is the same as the one the agent has to
do (i.e. prompt 8), the LLM quickly and learns to choose the right action even if during
the learning it loses its ability (with turn left and turn right that are almost at the
same probability. However, when the order of actions mentioned in the goal specification
is reversed (prompt 9), the LLM ends up favoring the wrong direction and exhibits much
more hesitation from the beginning of the training. This qualitative observation concurs
with the measure of success rate given in Appendix A.4.4.

The prompts 2, 3 and 4 show that the agent has difficulties with the task Open
<door>. This task is fairly complex since the agent has to infer that a key of the same
color as the closed door is required to open it. In the given training budget, the agent
fails to associate the need of a key with the task.

Finally, we test the agent on a task that is not seen during training. It is the general-
ization task Pick up <object A> then/after Pick up <object B> from Q3 Section 3.2.6,
composed from two tasks seen during training Pick up and Pick up then Go To (prompt
10). The prompt is built such that the agent has accomplished half of the instruction
and has to drop the object it carries in order to pick another one. The action drop is the
optimal one because it is the only one that allows the agent to complete the goal in a
minimum number of steps. Between the updates 400 and 600 the agent begins to increase
the probability of the drop action. This change is correlated to the change of distribution
in prompt 7. It can be interpreted as the fact that the action drop begins to be grounded
after 800 updates.

Table A.1: Test prompts. The prompts’ header (Possible action of the agent:

turn left, turn right, go forward, pick up, drop, toggle) is not shown below as
it remains the same for all prompts

Ids Tasks Prompts Comments
| 1ds | |

Go To <object>

Observation 0: You see a wall 2 step left, You see a purple key 1 step left
and 2 steps forward, You see a yellow key 1 step left and 1 step forward,
You see a green ball 3 steps forward, You see a grey ball 1 step right and

5 steps forward, You see a green key 1 step right and 2 steps forward,

You see a grey ball 1 step right and 1 step forward, You see a green key

2 steps right and 4 steps forward, You see a red box 2 steps right and

2 steps forward,

Action O:

Expected answer: go forward

Observation 0: You see a wall 2 step left, You see a purple key 1 step left
and 2 steps forward, You see a yellow key 1 step left and 1 step forward,
You see a green ball 3 steps forward, You see a grey ball 1 step right and

5 steps forward, You see a green key 1 step right and 2 steps forward,

You see a grey ball 1 step right and 1 step forward, You see a green key

2 steps right and 4 steps forward, You see a red box 2 steps right and

2 steps forward,

Action 0: go forward

Observation 1: You see a purple key 1 step left and 1 step forward,

You see a yellow key 1 step left, You see a green ball 2 steps forward,

Continued on next page

Goal of the agent: go to the green ball Simple navigation task.

Goal of the agent: go to the green ball Simple navigation task.




Evolution of actions distribution on evaluation prompts 151

Table A.1 — continued from previous page

‘ Id ‘ Task Prompt Comments
You see a grey ball 1 step right and 4 steps forward, You see a green key
1 step right and 1 step forward, You see a grey ball 1 step right, You see
a green key 2 steps right and 3 steps forward, You see a red box 2 steps right
and 1 step forward,
Action 1: turn right
Observation 2: You see a wall 2 step right, You see a green key 3 steps left
and 2 steps forward, You see a green ball 2 steps left, You see a red box 1 step
left and 2 steps forward, You see a green key 1 step left and 1 step forward,
You see a grey ball 1 step forward,
Action 2:
Expected answer: turn left
Goal of the agent: open the purple door Inference task
Observation 0: You see a wall 3 steps forward, You see a wall 3 steps left, The agent has to infer
You see a yellow key 1 step right and 1 step forward, You see a locked that a key of the same
R purple door 2 steps right and 3 steps forward, You see a purple ball 3 steps color is needed and
2 Open <adj> door . . K
right and 1 step forward, You see a green box 3 steps right, You see a purple key moves toward it.
2 steps left,
Action 0:
Expected answer: turn left
Goal of the agent: open the purple door Inference task
Observation 0: You see a wall 3 steps forward, You see a wall 3 steps left, The agent has to infer
You see a yellow key 1 step right and 1 step forward, You see a locked that a key of the same
purple door 2 steps right and 3 steps forward, You see a purple ball 3 steps color is needed and
right and 1 step forward, You see a green box 3 steps right, You see a purple key pick it up.
2 steps left,
3 Open <adj> door Action 0: turn left
Observation 1: You see a wall 3 steps forward, You see a wall 3 steps right,
You see a purple key 2 steps forward,
Action 1: go forward
Observation 2: You see a wall 2 steps forward, You see a wall 3 steps right,
You see a purple key 1 step forward,
Action 2:
Expected answer: pick up
Goal of the agent: open the purple door Inference task
Observation 0: You carry a purple key, You see a wall 3 steps forward, The agent has to infer
You see a wall 5 steps left, You see a yellow key 1 step left and 1 step forward, that you can open a
You see a locked purple door 3 steps forward, You see a purple ball 1 step right closed door by toggling
and 1 step forward, You see a green box 1 step right, it while having a key
Action 0: go forward of the same color.
. Observation 1: You carry a purple key, You see a wall 2 steps forward,
4 Open <adj> door
You see a wall 5 steps left, You see a yellow key 1 step left, You see a
locked purple door 2 steps forward, You see a purple ball 1 step right,
Action 1: go forward
Observation 2: You carry a purple key, You see a wall 1 step forward,
You see a wall 5 steps left, You see a locked purple door 1 step forward,
Action 2:
Expected answer: toggle
Goal of the agent: pick up green box The agent has to
Observation 0: You see a wall 2 steps forward, You see a wall 2 steps left, reuse knowledge
. . You see a yellow ball 1 step left and 1 step forward, You see a green box from navigation task.
5 Pick up <object>
2 steps right,
Action O:
Expected answer: turn right
Goal of the agent: pick up green box The agent has to
Observation 0: You see a wall 2 steps forward, You see a wall 2 steps left, reuse knowledge
You see a yellow ball 1 step left and 1 step forward, You see a green box from navigation task.
2 steps right, and understand the
Action O: turn right geometry of the room.
Observation 1: You see a wall 2 steps left, You see a blue key 1 step right,
6 Pick up <object> You see a red ball 2 steps right and 1 step forward, You see a green box
2 steps forward,
Action 1: go forward
Continued on next page
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Table A.1 — continued from previous page
‘ Id ‘ Task Prompt Comments
Observation 2: You see a wall 2 steps left, You see a red ball 2 steps right,
You see a green box 1 step forward,
Action 2:
Expected answer: pick up
Goal of the agent: put blue ball next to red box The agent has to
Observation 0: You carry a blue ball, You see a wall 5 steps forward, reuse knowledge
You see a wall 2 steps left, You see a grey key 1 step right and 2 steps from navigation
forward, You see a red box 3 steps forward, and understand the
7 Put <object A> Action 0: go forward geometry of the room.
next to <object B> Observation 1: You carry a blue ball, You see a wall 4 steps forward,
You see a wall 2 steps left, You see a grey key 1 step right and 1 step forward,
You see a red box 2 steps forward,
Action 1:
Expected answer: drop
Goal of the agent: pick up the blue ball then go to the red box Prompt 8 and 9
8 Pick up <object A> Observation 0: You see a wall 3 steps forward, You see a wall 4 steps right, test the ability
then go to <object B> You see a purple key 2 steps forward, You see a red box 2 steps right, of the agent to
You see a blue ball 2 steps left, understand
Action 0: temporal concepts.
Expected answer: turn left
Goal of the agent: go to the red box after you pick up the blue ball Same as prompt 8
Observation 0: You see a wall 3 steps forward, You see a wall 4 steps right, but sentence action
9 Go to <object B> You see a purple key 2 steps forward, You see a red box 2 steps right, order different from
after you pick up You see a blue ball 2 steps left, execution order.
<object A> Action 0:
Expected answer: turn left
Goal of the agent: pick up the green key then pick up the red box Task never seen in
Observation 0: You carry a green key, You see a wall 4 steps forward, training to
10 Pick up <object A> You see a wall 4 steps left, You see a red box 1 step left, You see a purple ball analyze generalization.
then pick up <object B> 2 steps left and 1 step forward,
Action 0:
Expected answer: drop
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Figure A.14: Evolution of actions’ probability over training for test prompts

listed in Table A.1.

A.4 Generalization tests details

A.4.1 Recapitulating results table

In this section we summarize the numerical results shown in Figure 3.5 with the

confidence intervals calculated as explained in Appendix A.7.

A.4.2 Complementary tests for Q2

To further analyze results from in Section 3.2.5, we conduct more systematic tests on

different aspects of the generalization to new words. The results are given in Table A.3.
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Table A.2: Generalization tests

Environments GFlan-T5 Flan-T5 NPAE DRRN Random

Mix - no change 0.89+0.05 0.11+0.03 0.17£0.04 0.14+£0.02

Mix - out-of-vocabulary | ) oo\ 005 0094002 016005 0.15 % 0.00
Q2 nouns 0.15 £ 0.05

ix - invented nouns 0.884+0.06 0.11+0.03 0.16+0.03 0.16 =+ 0.00
and adjectives

Pick up then/after 0.1240.06 0.02+0.00 0.06+0.01 0.06=0.03 0.05=+0.05

Q3 pick up
Mix - synonym actions 0.12+0.12 0.024+0.00 0.164+-0.04 0.174+=0.04 0.15+0.05
Go To - English 0.99+0.01 0.27+£0.03 0.31+0.04 0.3140.03 0.30 4+ 0.05
Go To - French 0.0240.01 0.03£0.00 0.304£0.02 0.314£0.02 '
Table A.3: Complementary tests for Q2
Environments GFlan-T5 | Flan-T5 NPAE DRRN Random
Mix - no change 0.89+£0.05 | 0.11£0.03 | 0.17+£0.02 | 0.14 4+ 0.02

Mix - unseen 0.87+0.03 | 0.12+0.03 | 0.16+0.08 | 0.17 = 0.09
in-vocabulary objects 0.15 £ 0.05

Mix - out-of- ]
ix - out-of-vocabulary | g oo\ 07 | 016+ 0.03 | 0.16 +0.02 | 0.16 £ 0.01

adjectives

Unseen in-vocabulary objects — During training we remove tasks whose goal
contain the following objects: yellow box, red key, red door, green ball and, grey door.
Nonetheless, the agent can have these objects as distractors and so have seen them during
training. We assess how our agents perform on the mix of tasks with goals using only
these objects. The success rate of 0.87 points out that GFlab-T5 is unaffected by the use
of unseen in-vocabulary objects.

Unseen out-of-vocabulary adjectives — We perform the same test as for out-of-
vocabulary nouns in Section 3.2.5 but this time with adjectives that do not belong to
the BabyAl-Text vocabulary. We generate the prompt by exchanging the adjectives with
predefined synonyms (see Table A.8). Similarly to the test with out-of-vocabulary nouns,
the test with out-of-vocabulary adjectives reveals that GFlan-T5 is unaffected by this
change. Indeed, the success rate is of 0.87 compared to the one of mix of tasks without
change at 0.89.

A.4.3 Complementary tests for Q3

In Section 3.2.6, we observe that GFlan-T5 fails to generalize to an environment where
we change the language. We hypothesize that such a change modifies too many grounded
symbols at once. To verify this hypothesis, we test a middle-ground version, where we
keep the environment in English but actions are in French. In this setting, Table A.4
shows that the success rate of the agent (0.15) is better than the fully french environment
(0.02). This observation supports that fine-tuned agents tend to generalize to related



Distributed experimental setup

Table A.4: Complementary tests for Q3

Environments GFlan-T5 | Flan-T5 NPAE DRRN Random
Go To - English 0.99+0.01 | 0.27+£0.03 | 0.31 =0.04 | 0.31 +=0.03
Go To - French 0.02+0.01 | 0.03£0.00 | 0.30+0.02 | 0.31 +£0.02 0.30 4 0.05

Go To - English with

actions in French

0.15£0.04 | 0.26 £0.02 | 0.31 £0.01 | 0.33 £0.00

words in other languages. Nonetheless, this ability seems highly dependent on the number
of grounded words we modify.

A.4.4 LLM grounding of temporal symbols: "then" and "after"

In this experiment we observe the dynamics of functional grounding of instructions
containing the temporal symbols "then" and "after" using the tasks: Pick up <object A>
then go to <object B> and Go to <object B> after pick up <object A>. As the order of
the action matters to have the task considered completed, a correct grounding of these
symbols is crucial. Table A.5 shows that GFlan-T5 has a better grounding of these words
than the original Flan-T5 agent. Moreover, we observe a slight bias after fine-tuning: the
agent has stronger performances for the tasks with "then" (success rate of 0.22) compared
to the tasks with "after" (success rate of 0.17). We hypothesize it is easier to ground the
word "then" because the order of the actions the agent must do is the same as the order
in which the actions appear in the instructions. A qualitative example of this behavior is
given in Appendix A.3 (prompts 8, 9).

Table A.5: Test on tasks with temporal components

Environments ‘ GFlan-T5 | Flan-T5 NPAE DRRN Random

Mix of tasks then/after | 0.23 +£0.06 | 0.12+0.01 | 0.09 +0.01 0.09 4+ 0.02
Tasks with then only 0.22+0.11 | 0.12+0.01 | 0.104+0.003 | 0.10 £0.02 | 0.04 £0.05
Tasks with after only 0.17+0.05 | 0.13£0.05 | 0.10£0.03 0.10 £ 0.01

A.5 Distributed experimental setup

In order to accelerate our online RL fine-tuning, we first leverage a classic distributed
data collection setup where 32 BabyAlI-Text environments are running in parallel (all on
CPUs). Our environments are run in a synchronous way, meaning that at every step,
we get 32 current states and need to send 32 actions back to the environment. In very
classic RL setups, policy networks are usually small and we simply batch the 32 states,
feed them to the network and obtain the 32 actions’ probability before sampling from
them and choosing one action per environment. However, as explained in Section 3.2.2,
our method requires |A| forward passes on a potentially very large and computationally
expensive LLM in order to compute actions’ probability for a single environment. Hence,
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we now need 32 x | A| forward passes for a single step in all environments, which can
easily become a huge bottleneck in our training process.

To overcome this, we deploy for each of our experiments in Section 3.2.3 4 instances
of our LLM all running in parallel. We load and use LLMs through the Hugging Face
Transformers Python library’. Our method relies on a simple client-server architecture
where the RL script acts as a client sending requests to LLMs. This client communicates
with a master server which dispatches the call over multiple servers (i.e. one per LLM).
Once each LLM has computed its subset of the call, the master gathers results and sends
the response to the RL client. We use Pytorch Distributed® with the GLOO backend for
communication (hence possible both on CPU-only and GPU setups). We wrap all these
in a Python library called Lamorel which can dispatch calls over the deployed LLMs from
a single line of code in the RL loop asking for actions’ probability for all environments.
Using this method, we observe a quasi-linear scaling with the number of deployed LLMs.

Once transitions have been collected, we update our LLM using the PPO loss. For this,
Lamorel helps parallelize the gradients’ computation with a Distributed Data Parallelism?®
setup where forward and backward passes over transitions are also dispatched on the
different instances of our LLMs. Then, Lamorel helps gather gradients and update each
LLM (as well as their value head) the same way. In addition, Lamorel also helps define a
custom computational graph linked to the LLM. We use this to add MLPs on top of our
Flan-T5 model for the value head (see experiments with action heads in Section A.2.4).

When using Flan-T5 780M, each LLM instance is distributed (Vertical Model
Parallelism*) 2 Nvidia A100 80GB GPUs requiring thus a total of 8 Nvidia A100 80GB
GPUs to run an experiment (2 GPUs x4 LLM instances). For Flan-T5 80M and
Flan-T5 3B, we respectively use 1 Nvidia V100 32GB and 4 Nvidia A100 80GB per
LLM instance.

In total, to conduct experiments and ablations we use 160 GPU.hours on the Nvidia
V100 32G and 18880 GPU.hours on Nvidia A100 80GB.

A.6 Fine-tuning details
A.6.1 PPO fine-tuning details

We reused PPO’s hyperparameters from Ramamurthy et al. (2023) and did not
perform any further tuning (see Table A.6). We used an Adam (Kingma & Ba, 2015)

optimizer with the hyperparameters listed in Table A.7). For additional heads, we used
MLPs with 3 hidden layers of 1024 units with Sigmoid activation.

"https://huggingface.co/docs/transformers/index

’https://pytorch.org/docs/stable/distributed. html

3https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

‘Layers are spread across GPUs (https://huggingface.co/docs/transformers/v4.15.0/
parallelism)


https://huggingface.co/docs/transformers/index
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://huggingface.co/docs/transformers/v4.15.0/parallelism
https://huggingface.co/docs/transformers/v4.15.0/parallelism

Confidence interval

Table A.6: PPO hyperparameters

Variable Value
Number of transitions collected between two updates 1280 (32 environments x40 steps in each environment)
Number of epochs per update 4

Batch size 64
Entropy loss coefficient 0.01
Value function loss coefficient 0.5
Discount factor 0.99

Ir 1x107°
A factor of the Generalized Advantage Estimator 0.99
Clipping parameter € 0.2
Maximum gradient norm 0.5

Table A.7: Adam hyperparameters

Variable Value
Learning rate 1 x 1076
€ 1x107°
51 0.9

5o 0.999

A.6.2 Behavioral Cloning

In Section 3.2.7, we show how grounding using RL differs from BC. For this, we

fine-tune Flan-T5 780M on 400.000 transitions collected on the Go To <object> task.

As indicated in Table A.4, GFlan-T5 obtains a 0.81 success rate on the 1000 test episodes
of the Go To <object> task. Hence by fine-tuning Flan-T5 to imitate GFlan-T5, one could
expect an on-par performance (or worse, but not better). We therefore use GFlan-T5 to
collect 400.000 transitions and fine-tune Flan-T5 using them. However, the stochasticity
in the GFlan-T5 policy leads to deceptive transitions in the dataset (potentially harmful
for BC). We thus also assess whether using optimal transitions to fine-tune Flan-T5 leads
to better results than GFlan-T5. To collect optimal trajectories, we use the bot provided
by BabyAlI and also gather 400.000 transitions on the Go To <object> task.

For fine-tuning, we use causal language modeling with the same prompt as the one
given to our LLM agents in Section 3.2.3 as input and the performed action as label. We

use the same learning rate as the one used by Rae et al. (2022) to generate Flan-T5 (i.e.

5 x 107*) and perform a single epoch on the 400.000 examples.

A.7 Confidence interval

In sections 3.2.5 and 3.2.6, we perform several generalization tests. For each test we
report the success rate over 2 seeds tested on 1000 episodes each. In the following, we
explain how we get the 99% confidence interval.
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A.7.1 Confidence intervals for GFlan-T5, Flan-T5 and DRRN

We model the success of an agent, trained with the seed i, on a task (i.e. episode
with its associated task) using a Bernoulli variable X* ~ B(p;), with p; the probability
of success of the agent . The number of successes after doing n episodes is the random
variable V! = >7)'_ X/ which follows a binomial law B(n,p;). If n is large enough, the
binomial distribution can be approximated by a normal distribution®. Thus we have

i ~ N(p,7?)

, (A1)
Yilpi ~ N(npia npi(1—p;))
where p is the mean success rate and 7 the variance.
Moreover, one property of normal random variables is that if
\%4 ~NVy, 2
(Vo, Zv) (A.2)
UV ~N(Uy+ XV, Zyv)
for any X ,then
U Uy + XV, X3y X'+ Sy XZy
~ N , i ) (A.3)
1% Vi SvX v
Hence we obtain U ~ N (Uy + X Vo, X3y X7 + Zppv).
By identification with Equation A.1, we have
Y, ~ N(np, (n7)* +npi(1 - p;)) (A4)

We can rewrite it using the random variable SR; the success rate of the the agent
(trained with seed i) during the test time (over n trajectories).

Y? (1 = p;
SR; = ;” ~N(p, 7>+ pill = p.) - pl)) (A.5)

pillopi) o % —— 0 and n is large, we can neglect this term with respect
n— oo

to 7 in equation above (we verify at the end that we rightfully neglected it) and obtain:

Because

SR; ~ N(p, ) (A.6)

Using the maximum likelihood estimation for normal random variables, we get with a
99% confidence interval:

pE 2.58% (A7)
N 1 s
P =52 SR,
2 LS 5 SR (A8)
= oD Zei=1\P i

with s the number of seeds used, p the estimator for p and 72 the unbiased sample

variance.

Susing the Berry-Essen theorem, the approximation is good enough if n > 9@ and n > Qﬁ
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A.7.2 Confidence intervals for random agents

As previously mentioned, we model the success of an agent using a Bernoulli variable
X ~ B(p), with p the probability of success. The measured success rate after doing n

episodes is the random variable SR, = = > X}, which also follows Bernoulli’s law B(p).

Following Hoffending’s inequality, we have:
P(|SR,, —p| > ¢) < 2exp (—2ne?) =6 (A.9)

with § the error.

Thus if we use n = 1000 episodes to measure the success rate and we want a confidence

of 99% (6 = 0.01) with € = /|-t In 2|, we get € = 0.05.

A.8 Word substitutions for generalization tests

For the generalization tests given in the sections 3.2.5, 3.2.6, and A.4, we use the
dictionaries given below to substitute some words by others.

A.8.1 Out of vocabulary

To generate descriptions with out-of-vocabulary nouns and adjectives, we modify the
prompt by substituting words as per Table A.8.

Table A.8: Out-of-vocabulary substitutions for Nouns and adjectives

Original Word New Word

key chair

ball table

box car

red vermillion
green jade

blue cyan
purple violet
yellow golden
grey silver

A.8.2 Invented words

Similarly to Section A.8.1, we apply the substitutions indicated in Table A.9.
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Table A.9: Invented substitutions for Nouns and adjectives

Original Word New Word

key dax
ball xolo
box azfe
red faze
green jatu
blue croh
purple vurst
yellow gakul
grey sil

A.8.3 Synonym actions

In A.10, we choose the synonym actions to avoid as much as possible to reuse already
used words in the fine-tuning (only "left" and "right" cannot be changed). To verify
that Flan-T5-Large considers these words as synonyms we ask it: "Answer the following
yes/no question by reasoning step-by-step. Are <original action> and <synonym action>
synonymous?”. We retain the synonym only if it considers that this is the case.

Table A.10: Synonym actions

Original Words Synonyms

turn left rotate left
turn right rotate right
go forward move ahead
pick up take

drop release
toggle switch

A.8.4 Translation to French

We give in Table A.11 the chosen translation for the french environment (the adjectives
are given in the feminine form as all the objects are feminine).



Word substitutions for generalization tests

Table A.11: French translation

English French

turn left tourner & gauche
turn right tourner & droite
go forward aller tout droit
pick up prendre

drop lacher

toggle basculer

go to a/the adj n

steps

You see a <object> <location>
You see a(n) open/closed door <location>
You carry a <object>

key

ball

box

red

green

blue

purple

yellow

grey

aller a4 une/la n adj

pas

Tu vois une <objet><location>

Tu vois une porte ouverte/fermée <location>

Tu portes un <objet>

clef
balle
boite
rouge
verte
bleue

violette

jaune

grise
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B.1 Experimental setup

B.1.1 Environments

Our experiments use both BabyAI-Text and TWC (Murugesan et al., 2021). The
latter is more complex regarding the number of objects and actions. We also argue
that commonsense knowledge is critical in TWC. Indeed, agents must achieve a series of
household tasks, such as "picking up an apple and placing it in an appropriate location".
The agent receives a description of the room it is situated in and a list of possible actions.

TWC games are categorized into easy, medium, and hard difficulties. As difficulty
increases, the number of target objects and rooms to clean up also increases, as detailed
in Table B.1.
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Objects | Targets | Rooms

Easy 1 1 1
Medium 2-3 1-3 1
Hard 6-7 5-7 1-2

Table B.1: Number of objects, target objects, and rooms in TWC games
per difficulty level.

To choose a difficulty level, we first conducted a o, evaluation of Flan-T5 on TWC-
Easy using different prompt formulations. The results, summarized in Table B.2, indicate
that the LLM does not encounter significant difficulties in solving tasks in o.,. This is
why we performed our experiments on TWC-Medium.

78M | 0.Y3 0.81 0.75 0.83
780M | 0.83 0.9 0.86 0.88

Table B.2: Flan-T5 evaluation in zero-shot on TWC-Easy.

B.1.2 Prompt variations

In this section, we detail the prompt formulations by providing examples: Figure B.1
shows an example of the initial state s! in TWC-Medium, formatted with different prompt
formulations, and Figure B.2 presents the same for BabyAl-Text.

B.1.3 Question-answering on environmental knowledge

In this section, we provide details on the datasets used for evaluating the environmental
knowledge acquired through functional grounding, following the methodology from Xiang
et al. (2023). The evaluation consists of two tasks:

(1) Task-related (TC) questions, where the model is asked to identify the relevant
object needed to complete a household activity. Example: "Question: To wash clothes,
a possibly related item could be. Possible answer: ["highlighter”, "crackers", "laundry
detergent”, "cupcake"| Answer:

(2) Object counting (OC) questions, where the model must determine the number of
objects in a specific location. Example: "you opened a cooking pot and grabbed an apple.
Next, you pulled out a dish bowl and scrubbed another apple. He found a bookshelf and
put the first apple on it. Then, you opened a clothes pile and washed it before putting
it on the same bookshelf. He grabbed another dish bowl and plate and put the cutlets on
the bookshelf. He moved the clothes pile, grabbed the first apple, and moved it back to its
original spot on the bookshelf. Finally, you put the second dish bowl on the bookshelf. How
many items are there on the bookshelf ?"
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Po:

Possible actions of the agent: close fridge, close kitchen cupboard, close oven,
take bottle of cold water from kitchen cupboard, take clean mug from dining table
Goal: clean the Kitchen

Observation: You can see a fridge. Empty! You can see an opened kitchen
cupboard. The kitchen cupboard contains a bottle of cold water. Oh, great. Here's an
oven. The oven is empty, You lean against the wall, inadvertently pressing a secret
button. The wall opens up to reveal a dining table. On the dining table you see a

clean mug.
Inventory: You are carrying nothing.
Next action of the agent:

P1:

Goal: clean the Kitchen

Inventory: You are carrying nothing.

Observation: You can see a fridge. Empty! You can see an opened kitchen
cupboard. The kitchen cupboard contains a bottle of cold water. Oh, great. Here's an
oven. The oven is empty, You lean against the wall, inadvertently pressing a secret
button. The wall opens up to reveal a dining table. On the dining table you see a
clean mug.

Possible actions of the agent:'close fridge', 'close kitchen cupboard', 'close oven',
'take bottle of cold water from kitchen cupboard', 'take clean mug from dining table'
Next action of the agent:

P2:

<Begin Possible actions> close fridge, close kitchen cupboard, close oven, take
bottle of cold water from kitchen cupboard, take clean mug from dining table <End
Possible actions>

<Begin Goal>clean the Kitchen <End Goal>

<Begin Observation> You can see a fridge. Empty! You can see an opened kitchen
cupboard. The kitchen cupboard contains a bottle of cold water. Oh, great. Here's an
oven. The oven is empty, You lean against the wall, inadvertently pressing a secret
button. The wall opens up to reveal a dining table. On the dining table you see a
clean mug.<End Observation>

<Begin Inventory> You are carrying nothing. <End Inventory>

Next action :

P3 .

Welcome to TextWorld! You find yourself in a messy house. Many things are not in
their usual location. Let's clean up this place. After you'll have done, this little house is
going to be spick and span! Look for anything that is out of place and put it away in
its proper location. What you can do is to close fridge, close kitchen cupboard, close
oven, take bottle of cold water from kitchen cupboard, take clean mug from dining
table. Your goal is to clean the Kitchen. You can see a fridge. Empty! You can see an
opened kitchen cupboard. The kitchen cupboard contains a bottle of cold water. Oh,
great. Here's an oven. The oven is empty, You lean against the wall, inadvertently
pressing a secret button. The wall opens up to reveal a dining table. On the dining
table you see a clean mug.. Now, You are carrying nothing., and your next action is to

Pa:

{Context: 'Welcome to TextWorld! You find yourself in a messy house. Many things
are not in their usual location. Let's clean up this place. After you'll have done, this
little house is going to be spick and span! Look for anything that is out of place and
put it away in its proper location.'

What you need to do: clean the Kitchen

What you see: 'You can see a fridge. Empty! You can see an opened kitchen
cupboard. The kitchen cupboard contains a bottle of cold water. Oh, great. Here's an
oven. The oven is empty, You lean against the wall, inadvertently pressing a secret
button. The wall opens up to reveal a dining table. On the dining table you see a
clean mug.'

What are you carrying:

What you can do: "close fridge, close kitchen cupboard, close oven, take bottle of
cold water from kitchen cupboard, take clean mug from dining table"

Next action :}

Figure B.1: Example of an initial state described using different prompt
formulations in TWC-Medium.
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Po:

Possible actions of the agent: turn left, turn right, go forward, pick up, drop,toggle
Goal of the agent: go to the purple box

Observation: You see a wall 2 steps forward, You see a purple box 2 steps left, You
see a purple ball 1 step right and 1 step forward, You

see a grey key 2 steps right

Next action :

P1:

Goal of the agent: go to the purple box

Possible actions of the agent: turn left, turn right, go forward, pick up, drop, toggle
Observation: You see a wall 2 steps forward, You see a purple box 2 steps left, You
see a purple ball 1 step right and 1 step forward, You

see a grey key 2 steps right

Next action :

Pz:

<Begin.Possible actions>turn left, turn right, go forward, pick up, drop, toggle <End
Possible actions>

<Begin Goal> go to a grey box<End Goal>

<Begin Current Observation>

Observation: You see a wall 3 steps forward, You see a wall 2 steps

left, You see a grey ball 1 step right and 1 step forward, You see a

grey box 2 steps right and 1 step forward, You see a grey box 3 steps

right and 1 step forward<End Current Observation>

Next action :

P3 H

you are on a maze and you have to solve a task, what you can do is: turn left, turn
right, go forward, pick up, drop, toggle your task is to go to a grey box, what you see
now: You see a wall 3 steps forward, You see a wall 2 steps

left, You see a grey ball 1 step right and 1 step forward, You see a grey box 2 steps
right and 1 step forward, You see a grey box 3 steps right and 1 step forward

and you next action is to

Figure B.2: Example of an initial state described using different prompt
formulations in BabyAi-Text.

B.1.4 Contrastive learning regularization

In this section, we clarify the rationale behind our choice of which token the contrastive
regularization should be applied to, as well as its adaptation to both encoder-decoder
and decoder-only architectures. We studied two pooling methods to obtain a single
representation of the prompt: mean pooling of token embeddings or using the first token
embedding. We conducted an evaluation (see Table B.3) of both methods on Flan-T5
78M in TWC-Medium, and observed that applying contrastive regularization to the
mean embeddings does not significantly affect performance, whereas using the first token
embedding yields better regularization.

For encoder-decoder architectures, we apply regularization to the encoding of the first
token in the encoders, following the work of Ni et al. (2022). In contrast, for decoder-
only architectures, the causal nature of these networks implies that naively applying
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P P b P
Contrastive Mean Token | 0.85 | 0.71 | 0.82 | 0.66
Contrastive First Token | 0.97 | 0.91 | 0.95 | 0.93

Table B.3: Comparison of the effect of contrastive regularization applied
to the first token versus mean token embeddings on Flan-T5 78M in TWC-
Medium.

contrastive regularization to the first token can diminish the contrastive loss, as the first
token does not have access to future tokens. To address this issue, we introduce a new
token, <contrastive>>, positioned at the beginning of the prompt, which has access to
bidirectional self-attention layers (i.e., no causal mask is applied. This approach enables
the <contrastive> token to access the entire prompt. Figure B.3 summarizes the method.

l( Conirustive > wy 1wy Wy l wy ] wy 1wy Wy

" Causal Bidirectionnel Attention , . .. ... idirecti i
attention (<contrastives token only) Bidirectionnel attention
Decoder-only Architectures Encoder-Decoder architectures (Encoder part)

Figure B.3: Selection of a regularization token for encoder-decoder and
decoder-only architectures. The regularization token is highlighted in red.
In decoder-only architectures, bidirectional attention is permitted for the
regularization token, enabling it to access the entire prompt and encode the
semantics.

Additionally, we examined which layers are most effective for applying contrastive
regularization. Empirical tests conducted on the first five layers of the LLM, presented in
Figure B.4, indicate that applying the regularization on lower layers yields superior perfor-
mance. Additionally, we found in our experiments that setting o = 0.5 in Equation 3.3.3
provides a better balance between the PPO loss and the contrastive loss.

B.2 Training costs

We trained Flan-T5 78M, 80M, and 2.7B, GPT-Neo 1.3B, and Llama 7B, with lamorel
to deploy eight instances of the LLM, each using a single NVIDIA A100 80GB. For
Flan-T5 78M, we employed four instances that used NVIDIA V100 32GB GPUs. Training
was conducted with five different seeds in each scenario and environment. In total, our
experiments required 10800 GPU hours on A100 80GB and 6400 GPU hours on V100
32GB.

B.3 Additional results
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Figure B.4: Comparison of different layer choices for applying contrastive
regularization on GPT-Neo 1.3B in TWC-Medium. Results reveal that lower
layers provide better performance. In contrast, performance declines as the
regularization moves towards higher layers.

B.3.1 Training curves

In this section, we present the SR curves over training for models trained on g, 0y.3,
and 00 in TWC-Medium with Flan-T5 78M (see Figure B.5). All training scenarios
converge, exceeding a 90% success rate. This indicates that the policy has effectively
learned to solve the required tasks. The models are trained for an identical number of
steps to ensure a fair performance comparison.

1.0
0.9

0.8

g_}) 08:3
0.7 oo
0.6 —

0 75000 150000 225000
steps

Figure B.5: Evolution of the Success Rate (SR) during the training of
Flan-T5 78M in TWC-Medium.

B.3.2 Statistical tests between fine-tuning approaches

Table B.4 provides complementary results on the differences between our fine-tuning
scenarios by displaying the mean SR and chi-squared results for the different Flan-T5
models, environments, and training scenarios.
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ENV Model | Metrics Oss 0o 00:3 08:3
SR 0.28 0.80 0.88 0.94
78 M +0.13 +0.12 + 0.04 +0.03
TWC ) 7x10~4 1,49x1074 | 0.99 0.99
X +6,6x107% |  +2x107* +0.01 +0.01
SR 0.38 0.83 0.87 0.89
780 M + 0.03 +0.11 +0.03| +0.05
) 0.99 4,5x1072 0.99 0.98
X +0.01 +6x107% | +0.01 +0.01
SR 0.25 0.38 0.49 0.52
78 M +0.13 +0.23 +0.17| +0.21
BabyAl ) 1x10~4 3,00x10~* | 0.531 | 3,1x1073
X +1074 +2x10~* +0.21 | +4x1073
SR 0.41 0.63 0.85 0.82
780 M +0.01 +0.24 +0.12| +£0.12
) 0.99 1,5x1073 0.99 0.97
X +0.01 +2,1x107* | 40.01 +0.02

Table B.4: Mean success rate and chi-squared (x?) p-value for Flan-
T5 models.

B.3.3 Fine-tuning on each prompt separately

In Figure B.6, we provide complementary results to the ones presented in Section 3.3.5
by showing the performance of Flan-T5 78 M and 780M when trained on each single

prompt separately.
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Figure B.6: Complementary results of success rates for both the 78 M
and 780M models in two environments across prompt formulations Py to Ps.
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B.3.4 Larger models

We perform the same success rates analysis as the one presented in Section 3.3.5 on
Flan-T5 2.7B and LLama 7B. Table B.5 summarizes the results, demonstrating that
prompt overfitting is also present in larger models. Due to the computational cost of
fine-tuning such large LLMs, this evaluation was performed exclusively on the TWC
environment with o, scenario.

Models PO P1 Pg P3
Llama 7B fine-tuned with og 0.9 | 072 |0.75 | 0.79
Flan-T5 XL 2.7B fine-tuned on o | 0.93 | 0.89 | 0.84 | 0.74

Table B.5: Success Rate (SR) for LLaMA 7B and T5-XL fine-tuned on a
single prompt in the TWC environment shows prompt overfitting.

B.3.5 Examples of trajectories

Figure B.7 shows an example of four trajectories of the Flan-T5 780M model trained
with oy and evaluated across Py, P;, P, andP;. The minimal number of actions is observed
when formatted with the formulation used during training, i.e. Fy. By contrast, changing
the prompt formulation results in irrelevant actions. For instance, when formatted with P,
the LLM loops four times between two actions before moving to the correct actions to
achieve the goal.
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Figure B.7: Trajectories of Flan-T5 780M trained with o9 and queried
using prompts Py to P3. Each vertical line represents a trajectory up to
achieving the goal, with the prompt formatted using a specific formulation P.

B.3.6 Complementary results for latent representations analysis

While Table 3.3 displays the mean intra and inter-prompt similarities for LLMs in
O.s, 00, Oo:3, and o), Table B.6 provides an individual breakdown of these similarities.
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Figure B.8: UMAP visualization of the hidden representations of
Flan-T5 780M with 0., and fine-tuning with o¢, 01, 02 and o3 on TWC-

Medium.
Models similarity Oss o) 00:3 08:3

Intra(Py) 0.988 0.987 0.987 0.938

Intra(Py) 0.989 0988 0.988 0.834

Intra(Py) 0.999 0.999 0.999 0.999

78M Intra(Ps) 0.993 0.992 0.993 0.858
Inter(Py,Py) 0.384 0.388 0.390 0.853
Inter(Py, P;) 0319 0.310 0.295 0.726
Inter(Po, P3) 0.427 0.448 0.429 0.823

Intra(Py) 0.998 0987 0.998 0.938

Intra(Py) 0.998 0988 0.997 0.834

Intra(P) 0.999 0.999 0.999 0.999

780M Intra(Ps) 0.999 0.992 0.999 0.858
Inter(Py.Py) 0.623 0.388 0.624  0.853
Inter(Py.P;) 0.165 0.310 0.164 0.726
Inter(Py.Ps) 0.619 0.448 0.622 0.823

Table B.6: Detailed inter and intra-similarity for Flan-T5 78 M and
780M models on TWC-Medium.

Besides, we further examine the UMAP visualization of models trained with og, o1, o9,
and o3 on TWC-Medium to observe potential cluster separation based on prompt for-
mulation rather than semantic content. Results in Figure B.8 reveal distinct clusters
corresponding to different prompt formulations in Flan-T5 780M, aligning with the findings
presented in Table B.6. Similarly, UMAP visualization with Flan-T5 78M in BabyAI-Text
(see Figure B.9) underscores the persistence of prompt overfitting across different model
sizes and environments. Notably, the clustering tendency appears more pronounced
in BabyAI-Text, which may elucidate the challenges encountered in implementing the

contrastive solution in the 78M model variant on BabyAI-Text.
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Figure B.9: UMAP visualization of the hidden representations of
Flan-T5 78 M with o and fine-tuning with Py, P1, P> and P; on BabyAl-

Text.

B.3.7 Prompt information use

In Figure B.10, we provide complementary results to the ones presented in Section 3.3.6
by showing the saliency maps of Flan-T5 78 M on TWC-Medium when trained on each
single prompt separately. Results show a variability in the importance of prompt parts

across different prompt formulations, even after fine-tuning the LLM.
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Figure B.10: Complementary results of Saliency maps of different
parts of prompts for fine-tuned Flan-T5 78M models on TWC-Medium on o

to o3.
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Figure B.11 summarizes outcomes based on two types of prompt formulations: 1)
when the formulation used during fine-tuning is equal to the one used in evaluation

(P, = P;) and 2) when oy differs from P;.
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Figure B.11: Saliency maps for fine-tuned Flan-T5 78 M models on TWC-
Medium when P; = P; and when P; # P;.

Notably, the contrastive regularization approach leads to more homogeneous represen-
tations, indicating consistent behavior of the LLM across various prompt formulations.
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C.1 The Playground-Text Environment

We use the Playground-Text environment from Appendix D.1, itself being a textual
adaptation of the Playground environment introduced by (Colas et al., 2020). This textual
environment returns, at each time step, a description of its state and possible actions. In
our experiments, we used a modified version of Playground-Text where the current state
still describes the whole environment’s state, but the next state only describes how the
performed action changed the environment (see Figure C.1).

Playground-Text features 4 different classes of objects with different varieties: Water,
Plants (carrot, potato, beet, berry, and pea), Small Herbivores (pig, cow, and sheep),
and Big Herbivores (elephant, giraffe, rhinoceros). As depicted in Figure 4.4, all objects
except Water possess two states: young (seed for plants and baby for animals) and grown.
These objects transition from their young state to their grown one by consuming other
objects.

Three different types of actions are possible: Go to <object>, to move to the selected
object, Grasp, to put the object the agent is standing on in its inventory (which has two
slots) and Release <object>/all to release one or all objects from the inventory on the
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object the agent is currently standing on. The resulting transitions can be categorized
into 6 different types: Standing, Holding 1, Holding 2, Grow Plant, Grow Small Herbivore
or Grow Big Herbivore. Growing transitions are triggered when the appropriate objects
are released on a young one (see the technology tree in Figure 4.4). All actions involving
non-existent objects in the current scene, as well as release actions that do not result in a
transformation (e.g. releasing water onto water) are considered illegal and masked.

State: You see the baby cow, the water, the potato seed, the baby rhinoceros, the
water, the pea seed, the water, the potato seed. You are next to the potato seed. In
your inventory, there is nothing.

Action: You go to the water.

Change: You are standing on the water.

State: You see the baby cow, the water, the potato seed, the baby rhinoceros, the
water, the pea seed, the water, the potato seed. You are next to the water. In your
inventory, there is nothing.

Action: You pick up the object.

Change: In your inventory, there is the water.

State: You see the baby cow, the potato seed, the baby rhinoceros, the
water, the pea seed, the water, the potato seed. In your inventory, there is the
water.

Action: You go to the potato seed.

Change: You are standing on the potato seed.

State: You see the baby cow, the potato seed, the baby rhinoceros, the
water, the pea seed, the water, the potato seed. You are next to the potato seed. In
your inventory, there is the water.

Action: You give the water.

Change: The objects transform into the potato.

Figure C.1: An example of a trajectory in Playground-Text.

C.2 WorldLLM details

In this section, we provide details about our WorldLLM implementation. All our
LLMs were loaded and prompted using the transformers library from Hugging Face. We
also provide our code for reproduction on the following repository: https://github.com/
flowersteam/WorldLLM.

175


https://github.com/flowersteam/WorldLLM
https://github.com/flowersteam/WorldLLM

176

WorldLLM

C.2.1 Statistician

The LLM used for the Statistician is Phi-3-mini-4k-instruct quantized to 4 bits. The
prompt used is shown in Figure C.2.

System prompt:

You like doing a lot of puzzles. Please answer with a brief answer and be as precise
as you can.

User prompt:

You are in an environment that contains multiple objects. It can contain water,
plant seeds(carrot, porato, beet, berry and pea seeds), small herbivores(pig, cow
and ship) and large herbivores(elephant, giraffe, rhinoceros). You can move objects,
like water, plants or herbivores and release them on another object to make them
interact and transform into a new object. You know that:

<hypothesis>

Your objective is to predict the next change in the environment given the state of
the environment and the action taken.

The last state was: <state>

The last action was: <action>

The change is: Assistant prompt:

<change>

Figure C.2: Prompt used for the Statistician. The <hypothesis> corresponds
to the hypotheses to test. The <state>, <action> and <change> represent
the current state, the action taken, and the resulting change, respectively,
for the given transition.

C.2.2 Scientist

The LLM used for the Scientist is the same as the one used for the Statistician. We
show its prompt in Figure C.3.

C.2.3 Experimenter

For the Experimenter, we provide further details for both our oracles and RL-based
policies.

Oracles

We show in Figure C.4 the distribution of transitions collected by each of our four
oracles.
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System prompt:

You like doing a lot of puzzles. Please answer with a brief answer and be as precise
as you can.

User prompt:

You are in an environment that contains multiple objects. It can contain water,
plant seeds(carrot, potato, beet, berry and pea seeds), small herbivores(pig, cow
and ship) and large herbivores(elephant, giraffe, rhinoceros). You can move objects,
like water, plants or herbivores and release them on another object to make them
interact and transform into a new object. Your previous experiences were:
<trajectories>

Can you find a set of easily understandable and concise hypotheses to predict how
the environment will change based on these trajectories? You can take inspiration
from the previous rules:

<previous hypothesis>

You also know that the previous set of rules failed the most on those trajectories:
<worst trajectories>

Answer with just the hypothesis.

Figure C.3: Prompt used for the Scientist. <trajectories> correspond
to the trajectories collected by the Experimenter, <previous hypothesis>
corresponds to the set of hypotheses that have been accepted at the last
iteration and <worst trajectories> to the trajectories where the previous
hypotheses obtained the worst log-likelihood.
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Figure C.4: Proportion of collected transition types for each oracle. We show
on the left the distribution of our stationary oracles and on the right the
evolving distribution of O-Curriculum.

RL agents

For our RL agents we used Masked PPO from stable-baselines3 contributions'. To
accelerate training, we used 15 parallel environments and collected 8 trajectories per
environment. We show the hyperparameters used in Table C.1.

Concerning the reward signals, we provide in Algorithm 2 the details on how RL-
ALPEXP compute its ALP reward. RL-ALPEXP introduces an additional hyperparameter
«a which regulates the reward’s smoothing of the reward. For each transition type, «
corresponds to the weight of the previous rewards obtained for this transition type. Its role

https://sb3-contrib.readthedocs.io/en/master/modules/ppo_mask.html
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is highlighted in our study from Appendix C.4.4 but « can be interpreted as an adjustment
factor determining the extent to which rewards from previous steps are retained. A value
of 0 for o implies that only the reward from the most recent step is considered, which
corresponds to RL-ALP, while a value of 1 indicates that the rewards are accumulated
from the beginning. After a manual hyperparameter search (see Appendix C.4.4), we
chose o = 0.9 across all transition types.

hyperparameter | value
gamma 0.99
Ir 5e — 4
vf coef 0.5
gae A 0.95
entropy 0.01
epochs 20
architecture 64 x 64

Table C.1: PPO hyperparameters used for our RL agents

Algorithm 2 RL-ALPEXP
1: Input: a moving average coefficient, Z set of transition types, T total number of
iterations, nsieps numMber of Metropolis steps at each iteration, f function returning
the type of a transition given a transition, = the Experimenter

2: Initialize (m;);ez < 0 > Initialize moving average for each type
3: for i =0ton do
4: Collect trajectories Dy <—env(m)
5 Perform ngeps Metropolis steps
6 for 7 € D; do
7: Compute reward (rq1p)r
8 (Tatpeap)r = @ * My + (1 — a) * (Tarp)r > Compute ALPEXP reward
9 for i € 7 do
2 1y(r)=p(Taip)r
10: mg =" te% e > Compute mean over transitions
T t
11: mg =axmg+ (1 —a)*mg > Update moving average
12: Update Experimenter 7

C.3 Generalization Tests

We show in Figure C.5 how the syntax of observations was changed in our generalization
tests. In particular, we modified the words associated to the transition (e.g. standing,
transform) and inverted the sentence. These changes were also applied to the prompts
used by the Scientist and the Statistician.
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Standing: You are standing on the <object>>. — The <object> is beneath you.
Holding 1: In your inventory, there is the <object>. — The <object> is in your
grasp.

Holding 2: In your inventory, there are the <object> and the <object>. — The
<object> and the <object> are in your grasp.

Grow Plant: The objects transform into the <object>. — The <object> results
from combining the objects.

Grow Small Herbivore: The objects transform into the <object>. — The
<object> results from combining the objects.

Grow Big Herbivore: The objects transform into the <object>. — The
<object> results from combining the objects.

Figure C.5: Changes in the observations for the generalization environment.

C.4 Additional Results

In this section, we first provide the complete evolution of log-likehoods on our test
set from Section 4.2.2. Then, we provide additional studies and experiments to improve
one’s comprehension of WorldLLM’s behavior. These investigations notably explore the
reasons behind the failure of RL-ALP and its differences with RL-ALPEXP.

C.4.1 Evolution of likelihoods

We report in Figure C.6 the evolution of log-likelihoods on our test set for all the
evaluated methods.
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Figure C.6: Evolution of log-likelihoods on the test set for all methods.
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C.4.2 Analysis of the Metropolis algorithm in the Scientist
Hypotheses Retention Rate
First, we analyze how the Metropolis algorithm performs when using an LLM as
both the proposal and target distribution. In particular, we study the evolution of ac-

cepted hypotheses throughout WorldLLM’s iterations when using different Experimenters
(Figure C.7).

Percentage of hypotheses kept as a function of the Metropolis algorithm inference.

O-Random
O-ldeal
O-Curriculum
O-Hardest
RL-LogP
RL-ALP
RL-ALPEXP

20 A

15

10 ~

Percentage of hypotheses kept

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of hypotheses generated

Figure C.7: Evolution of the hypotheses retention rate for the different
Experimenters.

Our results show a high percentage of accepted hypotheses (around 20%) at the
beginning of the experiment. However, as iterations progress, it becomes increasingly
challenging for the Scientist to generate more effective hypotheses, leading to a decline in
the retention rate (it reaches 2%). As highlighted in our manuscript, a developmental
strategy is key in WorldLLM. This is here illustrated by O-Curriculum’s ability to maintain
a higher retention rate than all other oracles. Additionally, preliminary experiments
performed with Phi4 suggested that employing a larger LLM for the Scientist improves
hypotheses generation and leads to higher retention rates for the same Statistician model.

Embeddings of the hypotheses

In order to compare the hypotheses generated by our Scientist, we used a sentence
transformer, all-mpnet-base-v2?, to project hypotheses in a latent space. We then
used T-SNE(Maaten & Hinton, 2008) to obtain a 2D representation of the embeddings.
As the number of generated hypotheses is high, we plotted only 1/10 of them for each
Experimenter and seed. We show these embeddings in Figure C.8.

“https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Additional Results

The results show that O-Curriculum and O-Hardest mostly produce similar hypotheses.

This indicates a Scientist’s tendency to refine previous hypotheses rather than generating

brand new ones. This corroborates our results on retention rate from previous section.

We also compute an inertia score across all seeds for each Experimenter:

VBeM, I=Y (z;,—Cs)® with Cy= % (C.1)
=1 =1

with M the set of Experimenters, x; the 2D projection from T-SNE for each set of
hypotheses and n the total number of hypotheses.

Results indicate that the clusters produced by O-Curriculum and O-Hardest are each
produced by a different seed. This highlights the current limitation of our Bayesian
inference approach where a single particle is used and never reset. As a result, our
Scientist may easily get stuck in local optima.

2D TSNE of the rules depending on the data collected

Methods Inertia Score
O-Random 4.12¢6
O-Ideal 4.38e6
O-Curriculum 2.77e6
O-Hardest 2.88e6
RL-LogP 4.52e6
RL-ALP 3.62e6
RL-ALPEXP 4.92¢6
Figure C.8: T-SNE em-
beddings obtained us- Table C.2: Mean of the
ing the all-mpnet-base- inertia score on the T-
v2 sentence transformer SNE embeddings across
on the hypotheses gener- the different seeds for
ated by different Exper- each Experimenter.

imenters.

C.4.3 Analysis of generated hypotheses

In this section, we propose a qualitative study of hypotheses produced by WorldLLM
when using O-Curriculum, O-Ideal and RL-LogP as Experimenters (see Figure C.9).

One can observe that each set of hypotheses covers multiple transition types. This can
be explicit, as seen in the hypotheses from O-Ideal, or more abstract, as the ones from

O-Curriculum, which replace specific animals and objects with abstract representations.

A closer examination of O-Curriculum’s hypotheses shows that new entities that do
not exist in Playground-Text such as "bear", "mouse" or "wolf" are introduced. This
aligns with our argument that natural language hypotheses could help the world model
generalize. However, our poor generalization results can be explained by the fact that
most hypotheses contain examples of transitions from the environment. Such examples
tremendously help our Statistician predict outcomes but also significantly impair its
generalization capabilities.
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O-Curriculum:

1. If the action is "You go to’ and the object is a seed or gentle creature (cow, elephant, sheep,
giraffe, bear, mouse, wolf), predict "You are standing on the [object]."

2. If you are standing on an animal’s seed and the action is "You give the water’, predict "The
objects transform into the [animall."

3. If the object is a seed or gentle creature (cow, elephant, sheep, giraffe, bear, mouse, or wolf)
and the action is "You give the water’, predict "The objects transform into the [animal]."

4. If you are standing on the water and the action is "You pick up’, predict "In your inventory,
there is the water."

5. If you are standing on the water and the action is "You pick up the object’, predict "In your
inventory’

O-Ideal:

1. The action was: You go to the water, and the change was: You are standing on the water.

2. The action was: You pick up the object, and the change was: In your inventory, there is the
water.

3. The action was: You go to the beet seed, and the change was: You are standing on the beet
seed.

4. The action was: You give the water, and the change was: The objects transform into the beet.
5. The action was: You pick up the object, and the change was: In your inventory, there is the
beet.

6. The action was: You go to the baby cow, and the change was: You are standing on the baby
cow.

7. The action was: You give the beet, and the change was: The objects transform into the cow.
8. The action was: You go to the pe’

RL-LogP:

1. Go to the water.

Change: You are standing on the water.

2. Pick up the object.

Change: In your inventory, there is the water.

3. Go to the water.

Change: You are standing on the water.

4. Pick up the object.

Change: In your inventory, there are the water and the water.

5. Go to the berry seed.

Change: You are standing on the berry seed.

6. Give the water.

Change: The objects transform into the berry.

7. Go to the water.

Change: You are standing on the water.

8. Pick up the object.

Change: In your inventory, there are the water and the water.

9. Go to the pea seed.

Change: You are standing on the pea seed.

10. Give the water.

Change: The objects transform into

Figure C.9: Examples of accepted hypotheses.

C.4.4 A deeper study RL-ALP

In this section, we provide a deeper analysis of RL-ALP’s failure. While expected
to be more robust than RL-LogP (e.g. to the "noisy TV" problem), our results showed
RL-ALP was unable to collect other transitions than Standing, leading to very poor
hypotheses. We begin this section by studying how directly using the per-transition ALP
as reward for an RL policy is challenging. Then, show how RL-ALPEXP differs and helps
stabilize training.



Additional Results

Failure of RL-ALP as the reward

To get a better grasp of the RL policy’s behavior when using RL-ALP, we plot the
evolution of rewards obtained by the policy in Figure C.10. We observe that most rewards
equal 0. Higher rewards are only obtained in the first data collections when Standing
transitions are not well predicted by the Statistician. After gathering such transitions, the
policy eventually converges to a random one. This absence of rewards can be explained
by our reward definition from Eq. 4.2.

1071 4

1072 4

Sum of rewards obtained

1073 4

1074 4

T T T T T T T T
0.0 0.2 0.4 0.6 0.8 10 12 14
Training Steps le6

Figure C.10: The evolution of rewards obtained by the RL agent when using
RL-ALP for a single seed. We plot the sum of rewards obtained for each
PPO update.

A positive reward is obtained only if a set of hypotheses are accepted between the
previous and the current iteration. However, as discussed in Appendix C.4.2, the number

of accepted hypotheses tends to quickly drop and eventually reach a very low percentage.

As a result, very few improvements (or degradation) are made to the Statistician’s
log-likelihoods, leading to zero rewards.

Ablation study on RL-ALPEXP

In Appendix C.2.3, we detailed RL-ALPEXP, which includes a new hyperparameter a.

This hyperparameter governs the weighting of smoothing applied to the reward computed
on various transition types over time. In this section, we explore the impact of this
hyperparameter.

To assess how a influences RL-ALPEXP, we conducted qualitative experiments with
a values set to {0.6,0.75,0.9,0.95}. To gain insights into the underlying behavior, we

analyze the transitions collected by the policy. The results can be found in Figure C.11.

From these results, we observe two behaviors depending on the values of a. On one
hand, when « is smaller than 0.9, the RL policy demonstrates a periodic behavior. This
phenomenon becomes more pronounced as « decreases, leading to instability that hinders
WorldLLM’s ability to improve consistently.

It seems that the reward diminishes to zero before the Scientist and Statistician can
refine the existing hypothesis. This decline ultimately leads to a collapse in the RL agent’s
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Figure C.11: Transitions collected by the Experimenter when using RL-
ALPEXP for o = {0.6,0.75,0.9,0.95} respectively.

policy. As a result, the distribution of the collected data begins to resemble that of a
random agent, as in the first iterations of WorldLLM. In response, the Scientist generates
hypotheses that cause the framework to revert to an earlier stage.

On the other hand, as « gets closer to 1, the reward takes increasingly longer to fade.
This can be problematic as the reward function used is an estimation of the learning
progress. For example, the high rewards collected at the beginning of training are no
longer relevant after multiple iterations.

This hyperparameter search explicitly shows that RL-ALPEXP has not fully resolved
the sparse reward problem inherent to RL-ALP. If « is too small, the agent’s policy
collapses to random. If it is too close to 1, the old rewards obtained require too much time
to fade. One potential solution could be to add a small fraction of RL-LogP’s rewards.
This addition would prevent the agent’s policy from collapsing but would require a new
hyperparameter to balance the reward from RL-ALP and RL-LogP.
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D.1 Playground-Text

The Playground-Text environment is a text-based environment where goals, observa-
tions, and actions are all represented in natural language. The environment consists of a
scene with N=6 objects. The agent can move toward these objects using the action "Go
to {object}", and can interact with them using "Grasp" to pick up objects and " Release"
to put them down. There are four types of objects: furniture, supplies, plants, and
animals. The "supplies" category contains two items: food and water. When the agent
brings water to a plant, the latter grows; animals can grow with either water or food.
Objects’ colors are irrelevant for solving goals and serve only as distractions for the agent.
Observations from the environment fully describe its state, as shown in Figure D.1.

Goal: Grow green mouse then grow blue rose

You see: green water, green mouse, blue rose, red rose, blue lion, red food
You are on: nothing

You are holding: nothing

You have grown: nothing

Action:

Figure D.1: An observation in the Playground-Text environment. All
necessary information is provided in the observation, making the environment
fully observable.
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There are two types of goals in the environment: "Grasp {object}" and " Grow
{object}." Additionally, we introduce sequential goals such as "Grow {object A} then grasp
{object B}" or "Grow {object A} then grow {object B}." Rewards are set to 0 at each
step, with a reward of 1 when achieving the goal. The agent is trained on goals sampled
uniformly from all available goals. However, the distribution of goal types is not uniform,
with the majority being sequential goals (Figure D.2).

7000
6000
5000
4000
3000
2000

1000

Figure D.2: Proportion of each goal type. The distribution of goals is
highly imbalanced, with sequential goals making up 98% of the total.

D.2 Implementation details

In our approach, the actor is modeled using a pre-trained encoder-decoder LLM, with
the critic positioned as an MLP attached to the final decoder block, similar to the GLAM
architecture. To optimize GPU VRAM usage during training, we employed LoRA (Hu
et al., 2022) and 4-bit quantization.

We implemented SAC with automatic tuning of the entropy coefficient (using a
learning rate of 2e—3). For SAC-GLAM alone, we initialized it at 0.005 and set the
target entropy to be 0. For SAC-GLAM with HER, we initialized it at 0.05 with a target
entropy of 0.01. Both the actor and critic were trained using the Adam optimizer with a
learning rate of le—4. The critic MLP has two hidden layers, each with 1024 units and
ReLU activation functions. Detailed hyperparameters are provided in Appendix D.4.

We used a vectorized version of Playground-Text with 32 instances of the environment
running (synchronously) in parallel. We leveraged Lamorel', as in GLAM, and deployed
four instances of the LLM in parallel (distributing both the forward passes to compute
the actions’ probability and the training in a Data Parallelism setting). When using

"https://github.com /flowersteam /lamorel
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Flan-T5 250M, each LLM instance is deployed on one Nvidia V100 32GB GPUs, requiring
a total of 4 Nvidia V100 32GB GPUs to run an experiment (1 GPU x 4 LLM instances).

In total, running all experiments and ablations required 80 GPU hours per seed on the
Nvidia V100 32GB.

D.3 Batch sampling with HER

We studied the impact of how relabeled trajectories are integrated in the replay buffer
(Figure D.3). We implemented HER with the future strategy proposed in Andrychowicz
et al. (2017) (i.e., a trajectory is relabeled with every achieved goal and all these relabeled
trajectories are added to the replay buffer) and compared three settings:

e The default one, where transitions are randomly sampled from the replay buffer to
train our policy and critic (which can have the disadvantage of leading to batches
predominantly filled with relabeled trajectories, as shown in Figure D.4)

e The "prior" scenario, where, instead of uniformly sampling from the replay buffer,
batches were sampled with transitions that reflected the environment’s goal distri-
bution (see Appendix D.2)

e The "ratio" scenario (used in all our experiments as described in in Section 5.1.1),
where we balanced the batches by sampling 50% of relabeled transitions and 50%
of transitions with their original goal (a similar approach was used in Colas et al.
(2020), where they also employed HER and sampled an equal proportion of positive
and negative transitions)

—— HER
1.04 HER + ratio
I —— HER + prior
C 0.84 — HER + ratio + prior
a 4
8 v
U 0.61
3
0
()]
20.4-
g
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0.0
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Figure D.3: Comparison of different sampling strategies. "prior" refers
to the sampling strategy used to address issue (1), while "ratio" refers to
the strategy used to address issue (2).

We only observed a minor impact on sample efficiency and opted for the "HER +
ratio" strategy in our experiments, as the "prior" method makes the strong assumption
of knowing the environmental goal distribution.
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Figure D.4: Proportion of HER transitions in the replay buffer
when uniformly sampling. The plot shows the proportion of transitions
relabeled by HER compared to those directly collected from the environment.

D.4 Hyperparameters

Tables D.1, D.2 and D.3 summarize all the hyperparameters used in the experiments
whose results are presented in Figure 5.2.

Table D.1: PPO-GLAM hyperparameters

Variable Value
Number of transitions collected between two updates 2048
Number of epochs per update 16
Batch size 256
Entropy loss coefficient 0.01
Value function loss coefficient 0.5
Discount factor 0.99
Optimizer Adam
Learning rate 1x107*
A factor of the Generalized Advantage Estimator 0.99
Clipping parameter e 0.2

Maximum gradient norm 0.5




Hyperparameters

Table D.2: SAC-GLAM hyperparameters

Variable

Value

Update frequency

Number of updates

Batch size

Discount factor

Optimizer

Critic learning rate

Actor learning rate

Entropy coefficient

Entropy coefficient initialization
Target entropy

Entropy coeflicient learning rate
n-step

Replay buffer capacity

32
2

256

0.99
Adam
1x10~*
1x107*
auto
0.005

0

2x 1073
3
100000

Table D.3: SAC-GLAM + HER hyperparameters

Variable

Value

Update frequency

Number of updates

Batch size

Discount factor

Optimizer

Critic learning rate

Actor learning rate

Entropy coefficient

Entropy coefficient initialization
Target entropy

Entropy coeflicient learning rate
n-step

Replay buffer capacity
Hindsight proportion per batch

32
2

256

0.99
Adam
1x1074
1x1074
auto
0.05
0.01

2x 1073
3
100000
0.5
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E.1 Little-Zoo environment
E.1.1 Environment mechanics

There are 5 categories of elements the agent can interact with: the objects (i.e.
"bookshelf"), the water, the plants (i.e. tomato) which can bee seed and grown, the
herbivores (i.e cow) which can be baby or grown, and the carnivores (i.e. lion) which can
be baby or grown.

To interact with any element of the environment, multiple actions are accessible.
First, the agent can use "Go to {element}" to move to any element. You can only move



Little-Zoo environment

to an element (not a random point in the plane) and after a "Go to" action you are
placed on the element. When performing the "Grasp" action, the element the agent is
standing on is added to its inventory (up to 2 items). Some elements can interact with
each other. To make two elements interact, the agent must release one element in its
inventory by using the "Release {element}" action while standing on the other element.
Interactions between three elements are also possible: the agent has to hold two elements
in its inventory and perform "Release all" while standing on the third element. The
"Release" action is only accessible if an interaction can be made between the element to
release and the one the agent is standing on. Therefore, the agent must carefully manage
its inventory to avoid filling it with useless elements without being able to release them.
At each turn you get a full description of the environment with "You see {element_1},
{element_2}, {element_3}, {element_4}".

To grow a plant, an herbivore or a carnivore, the agent needs to follow a certain
sequence of actions:

e To "Grow a plant", the agent has to "Release water" while "Standing" on the
plant seed.

e To "Grow an herbivore", the agent has to "Release a grown plant" while stand-
ing on a baby herbivore.

e To "Grow a carnivore", the agent has to "Release a grown herbivore" while
standing on a baby carnivore.

Table E.1 summarizes the optimal action strategy for each category. In order to
maintain a coherent level of difficulty between the different categories, we fix the maximal
number of actions allowed to the agent to solve a goal as 150% of the minimal number of
actions required to solve the goal. The required exploration to discover strategies has,
therefore, the same level of difficulty for all goals.

Table E.1: The optimal trajectories per category.

. . . Minimal number | Maximal number
Categories Optimal action strategy . .
of actions of actions
Grasp X Go to X, Grasp 2 3
Go to water, Grasp, Go to plant
Grow plant ’ P, PRttt 4 6
Release water
Go to water, Grasp, Go to plant,
Grow herbivore | Release water, Grasp, Go to herbivore 7 11
release plant
Go to water, Grasp, Go to plant,
Release water, Grasp, Go to herbivore
Grow carnivore ’ P, ’ 10 15
release plant, Grasp,
Go to carnivore, release

191
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E.1.2 Goal space generation

To define our goal space, we start from the sets of objects O, plants P, herbivores
H, carnivores C and the element water (each set being of size 6). One goal g in the
goal space is defined using 5 elements (Ey, E1, Es, E3, Ey) € {O, P, H,C,water} and by
using the objective function F, from the set {Grasp{X}, Grow{X}} on E,. Thus, we get
the goal g = (F,(Ey), E1, Es, E3, Ey). As each set contains 6 elements, we get a total of
19,531,250 goals. The vast majority of these goals are impossible for various reasons (see
Appendix E.1.3).

In our experiments, we subsample two goal spaces: a train and held-out test space.
To generate them, we sample the total number of impossible goals 7,,,, we want to

have, then sample among the possible goals: =222 goals where Ey € O, ™22 goals where
E, € P, “zre goals where Ey € H, and “zee goals where E, € C. Appendlx E.1.4 gives
more detalls on the goal repartition.

E.1.3 Example of impossible goals

In our environment, a goal is defined as a combination of elements present in the
environment and an instruction, such as "grasp the rabbit". Some combinations are
incompatible such as:

Grasp rabbit

You see: Dbookshelf, baby lion, desk, baby cow,

where there is no rabbit. The generation of our environment leads to having 80% of
impossible goals in the goal space, which is similar to any complex environment Zhang
et al. (2024b); Matthews et al. (2025). However, conversely to Zhang et al. (2024b),
identifying impossible goals and avoiding to select them is not trivial, as there are multiple
reasons why a goal is impossible.

The easiest reason for impossibility is the absence of the element the agent has to act
on:

e Absence of the element to grasp
Goal: Grasp bed
You see: bookshelf, baby lion, desk, baby cow.

e Absence of the element to grow
Goal: Grow deer
You see: baby giraffe, bookshelf, water, tomato seed.

Another reason is that the element cannot follow the dynamic required in the objective:

e Growing an element that is neither an animal nor a plant
Goal: Grow desk
You see: bed, baby bobcat, baby elephant, door.

A more difficult reason that requires a better understanding of the underlying mech-
anisms of the environment is the lack of at least one element necessary to reach the
objective grow:



Little-Zoo environment

e The lack of water:
Goal: Grow cucumber
You see: cucumber seed, carrot seed, baby coyote, baby wolf,
Goal: Grow coyote
You see: cucumber seed, berry seed, baby coyote, baby cow.

e The lack of a plant preventing the agent to grow an herbivore resulting in the
impossibility to grow a carnivore:
Goal: Grow coyote
You see: water, baby elephant, baby coyote, baby cow.

Consequently, to efficiently build a curriculum, being able to understand why a goals
is impossible and quickly generalize to infer the other impossible goals is crucial.

E.1.4 Goal repartition

92.14%

80.03%

084

Proportion

024

0.21% 0.09% 0.03%

0.64% 0.13%

Impossible Grasp Grow Grow Grow p
plant herbivore camivore Impossible Grasp Grow Grow Grow
Categories plant herbivore camivore

(a) Goal distribution per category on the full (b) Goal distribution per category in our exper-
goal space. iments.

Figure E.1: We first generate the full goal space whom the distribution is
given Figure E.1a then for computational reasons we sample a smaller goal
space with the following distribution Figure E.1b.

At the end of the goal space generation, we have 19531250 goals distributed as
presented in Figure E.la. However, using all the goals was computationally impossible
considering all the comparisons we made. Moreover, the repartition with 92% of impossible
goals and 7.53% of "Grasp" goals made the epsilon-greedy exploration of our goal selector
too slow to discover LP niches in an acceptable compute budget. Subsequently, we
sample a training goal space and a testing goal space following the distribution given in
Figure E.1b. Both goal spaces are composed at 80% of impossible goals, the remaining goal
categories becoming less and less represented as the difficulty increases. This repartition
synthetically simulates how natural language goals mostly lead to sequences of words
without any meaning. This structure makes the strategy of uniformly sampling goals
inefficient and underlines the necessity of a curriculum to be able to reach the hardest
goals in the allocated training budget (500k episodes in our experiments).
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E.2 Comparison of LP methods

We compare prior work computing LP for automatic curriculum learning under the
dimensions from Section E.4.2. We show the comparison in Table E.2 evaluating methods:

e Efficiency: Computational cost of additional evaluation episodes not used to train
the policy.

e Competence transfer tracking: How well does the method track all the possible
competence transfer.

e No expert knowledge required: if they require any external expert knowledge
such as pre-defined goal groupings.

We consider a method’s efficiency as “high” if it does not require any additional evaluation
(i.e. it only uses the performance observed on goals sampled), and as “low” otherwise. We
evaluate the competence transfer tracking using the following criteria:

e absence of +: the estimated competence is updated only on sampled goals.

e +: the estimated competence is updated on a predefined goal subset the sampled
goal belongs to.

e +: the estimated competence is updated on a dynamically learned goal subset the
sampled goal belongs to.

e ++-+: the estimated competence is updated on all goals.

Methods Efficiency Competence transfer tracking No expert knowledge required
Oudeyer & Kaplan (2007) high ++ v
Baranes & Oudeyer (2009) high ++ v
Baranes & Oudeyer (2013) high ++ v
Moulin-Frier & Oudeyer (2013) high ++ v
Moulin-Frier et al. (2014) high ++ v
Portelas et al. (2020a) high 44+ v
Forestier & Oudeyer (2016) high ++ v
Kovac et al. (2023) high ++ v
Stout & Barto (2010) high + X
Lopes & Oudeyer (2012) high + X
Matiisen et al. (2017) high + X
Fournier et al. (2018) high -+ X
Colas et al. (2019) high + X
Blaes et al. (2019) high + X
Akakzia et al. (2021) high + X
Kumar et al. (2024) high + X
Kanitscheider et al. (2021) low -+ v
Zhang et al. (2024b) low +++ v

Table E.2: Comparison of prior work w.r.t. their LP estimation approach. We
use the following dimensions: computational efficiency, dynamical competence
transfer assumptions and no required expert knowledge.
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E.3 Implementation details

To facilitate reproduction and future work, we provide our code at https://github.
com/flowersteam/MAGELLAN.

E.3.1 LLM-based RL agent

We use SAC-GLAM with the hyperparameters listed in Table E.3. Following Sec-
tion 5.1, the Q-value head is a two-layer MLP with 1024 ReLU-activated units, applied
to the last hidden state of the decoder. The policy and the critic share the same LoRA
adapters. Additionally, we apply a warm-up phase of 10 updates, during which only the

Q-function is trained.

Table E.3: SAC hyperparameters

Variable

Value

Update frequency

Number of updates

Batch size

Discount factor

Optimizer

Critic learning rate

Actor learning rate

Entropy coefficient

Entropy coefficient initialization
Target entropy

Entropy coefficient learning rate
n-step

Replay buffer capacity

64
1

256

0.99
Adam
1x10~*
1x107*
auto
0.05
—0.125
1x1073
3
500000

The prompt used as the LLM agent’s observation is shown in Prompt E.3.1.

Goal: Grow lion

You see: water, carrot seed, baby lion, baby cow

You are standing on: nothing

Inventory (0/2): empty

Action:
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E.3.2 MAGELLAN

Our competence estimator uses a single-layer MLP with 128 units and Tanh activations,
applied to the last hidden state of the LLM. It is updated every 32 policy updates, with
batch sampling that prioritizes recent data. The sampling distribution is determined
by %, where i represents the position of a data point in the buffer D (with 1 being
the oldest and M the buffer size). This strategy ensures that the competence predictor
remains responsive while preserving batch diversity, incorporating data from different
versions of the learning agent to help mitigate noise introduced by the fluctuations in the
RL agent’s learning process.

To compute the LP, we store the weights of our competence estimator in the buffer B.
This is done by saving the LoRA adapters and the MLP weights whenever the competence
estimator is updated. The window for LP computation is defined by |B| x update frequency.
The LP is calculated by comparing the competence estimation obtained with the oldest
and most recent weights in the buffer.

The MAGELLAN hyperparameters are provided in Table E.4.

Table E.4: MAGELLAN hyperparameters

Variable Value

€ start 1

€ end 0.2

€ decay period 320

B size 100

D size 5000
Batch size 256
Optimizer Adam
Learning rate 1x1074

Update frequency 32

The prompt given to the competence estimator is the same as the prompt given to
the RL agent Prompt E.3.2.

Prompt C.2: MAGELLAN prompt

Goal: Grow lion

You see: water, carrot seed, baby lion, baby cow
You are standing on: nothing

Inventory (0/2): empty

Action:
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E.3.3 Baselines

We compared our method against four baselines: Online-ALP, Eval-ALP, EK-Online-
ALP, and EK-Eval-ALP. Below, we outline the implementation details for the different
families of methods:

e Non-EK methods For methods that do not rely on expert knowledge, competence
and LP estimations are computed individually for each goal.

¢ EK methods For methods incorporating expert knowledge, goals are grouped into
five buckets, with competence and LP computed at the bucket level.

e Online methods In online methods, a buffer of size M stores goal-outcome pairs.
The agent’s current competence is estimated from the most recent half of the buffer,
while past competence is derived from the oldest half. Non-EK methods maintain a
separate buffer for each goal, whereas EK methods use a buffer for each bucket.

e Eval methods In evaluation-based methods, the agent’s competence is assessed
every N episodes. For non-EK methods, the agent is evaluated k times on each
individual goal, while for EK methods, evaluations are performed k times per bucket.

The hyperparameters for Online methods are presented in Table E.5, while those for
Eval methods are shown in Table E.G6.

Table E.5: Online methods hyperparameters

Variable Value
€ start 1

€ end 0.2

€ decay period 320
Buffer size 100

Table E.6: Eval methods hyperparameters

Variable Value
€ start 1
€ end 0.2

€ decay period 320
Eval frequency 1000
Number of eval 2048
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E.3.4 Compute budget

To optimize GPU VRAM usage during training, we employ 4-bit quantization. We
use a vectorized version of Little-Zoo with 32 instances of the environment running
(synchronously) in parallel. In order to accelerate training of our LLM agent (both its
policy with online RL and MAGELLAN), we leverage Lamorel® to deploy 2 instances of
the LLM in parallel. Thus, we distribute both the forward passes to compute actions’
probability or LP and training in a Data Parallelism setting. When using Flan-T5 250M,
each LLM instance is distributed (Vertical Model Parallelism) over one Nvidia H100
80GB GPUs requiring thus a total of 2 Nvidia H100 80GB GPUs to run an experiment
(1 GPU x 2 LLM instances). For one seed of one ALP method trained in Section 5.2.3,
performing 500k training episodes requires 80 GPU hours on the Nvidia H100 80GB.

Thttps://github.com /flowersteam /lamorel
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E.4 Additional results
E.4.1 Ablations on the MAGELLAN architecture

In order to implement MAGELLAN, we try various architectures presented in Fig-
ure E.2. In all of them, to reduce the computational cost, we froze the LLM and used
LoRA adapters Hu et al. (2022) for training the policy (along with its Q-value) and the
SR estimator. The architectures tested are:

e A: Different adapters for the policy and MAGELLAN (Figure E.2a). This
is the architecture adopted in this work. The environment representation for the
policy and the goal space representation for the competence estimator are learned
separately on different adapters.

e B: Shared adapters for the policy and MAGELLAN (Figure E.2b). We
test whether a shared useful representation between the policy and competence
estimator can emerge through training.

e C: Shared adapters but only trained with the policy loss(Figure E.2c). We
use a single set of LoRA adapters to train both the policy and the competence
estimation module, but apply the latter’s gradient only to the MLP outputting the
competence. This ablation tests if the policy loss on its own creates semantical
relationships between goals. We argue that training of the policy should push
towards a clustering of the goal space.

e D: Adapter only for the policy, frozen LLM representation for MAGEL-
LAN(Figure E.2d). In this ablation, we test if MAGELLAN can learn to predict
competence using the LLM’s original latent space. Learning to estimate competence

over a fixed representation is closer to prior works such as ALP-GMM Portelas et al.
(2020a).

We compare the learning dynamics of the four architectures in Figure E.3. We
observe no difference in their ability at learning "grasp" goals. However, the agents
with Architecture A continue to progress on other goal types whereas the ones using
Architectures B, C, and D stagnate between 50k and 100k episodes before progressing
again. At the end of training (500k episodes), agents using architecture A have learned
all goal types. The ones based on Architectures B and C learned up to "grow herbivore"
goal types. The agents that utilize Architecture D succeed plateaued on "grow plant".

To gain a finer comprehension of the learning dynamics implied by the different
architectures, we look in Figure E.4 at the embeddings at the end of training for each
architecture.

Architecture A (Figure E.4a) and architecture B (Figure E.4b) shared very similar
representations with in both cases goals clustered between "grasp", "grow" and impossible
goals. Inside the cluster "grow" the different element types (i.e. plants, herbivores,
carnivores) are also clustered. Nonetheless, as seen in Figure E.3, Architecture B does
not master "grow carnivore" goals and classified them as impossible. This indicates that
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Figure E.2: Different architectural choices in MAGELLAN: (a) we learn
separate LoRA adapters between the policy and MAGELLAN (used in this
work); (b) we share adapters and update them using both the policy and
MAGELLAN gradient; (c) we share adapters but they are only updated by
the policy gradient; (d) MAGELLAN directly uses the latent representation

produced by the pre-trained LLM.
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Figure E.3: Training curves of the four different possible architecture for
MAGELLAN. We use 8 seeds to plot the mean and the standard deviation
(shadow area around the solid line).

obtaining a shared latent space for the policy and MAGELLAN is possible but slows
down skill acquisition.

Architecture C (Figure E.4c) where MAGELLAN uses the representation solely
changed by the policy still manages to accurately estimate competence. However, pre-
dicting competence is much more difficult using this architecture as the goal space is not
modified ease competence estimation. Yet, using only the policy gradient still improves
the initial latent space of the LLM as shown by Architecture D (Figure E.4d).
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Figure E.4: The LLM embedding space of MAGELLAN displayed using t-
SNE with goals used in Q2 (Train) and Q3 (Test), along with MAGELLAN’s
estimated success probability and linear interpolation between goals. We
show the embedding space for a single seed for the four architectures described
in Appendix E.4.1 at the end of the 500k training episodes.

E.4.2 Q1. Competence estimation properties
Per-goal competence estimation
In this section, we report the evolution of the per-goal competence estimation of

experiments from Section 5.2.3. We show it separately for the three goal space size: 25k
(Figure E.5), 50k (Figure E.6) and 100k (Figure E.7).
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Figure E.5: Evolution of competence estimation for each ALP method on
each goal category for 25k goals. We show the average competence and its
standard deviation across 8 seeds that use EK-Eval-ALP to sample goals.
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Figure E.6: Evolution of competence estimation for each ALP method on
each goal category for 50k goals. We show the average competence and its
standard deviation across 8 seeds that use EK-Eval-ALP to sample goals.



204

MAGELLAN

—— MAGELLAN  ---- EK-Online-ALP
Online-ALP EK-Eval-ALP
Grasp Grow Plants

5

3

Estimated Success Probability
S 8

Estimated Success Probability
&

10k 20k 30k 40k 50k 10k 20k 30k
Episodes Episodes

]2 Grow Herbivores - Grow Carnivores
»10 >10
3 3
H H
Sos Sos
& &
Sos i Sos
a % a
< / E]
2o4 g Zoa
g / £
do2 7 o2
= % 7 i
o L ’\”‘\m«.«-i/ 00 > _ =

10k 40k, 50k

20k 30k 20k 300
Episodes Episodes

Figure E.7: Evolution of competence estimation for each ALP method on
each goal category for 100k goals. We show the average competence and its
standard deviation across 8 seeds that use EK-Eval-ALP to sample goals.

Competence estimation on the BabyAlI-text
goal-space

We replicated the experiment from Section 5.2.3, simulating a learning agent and
estimating its competence online using MAGELLAN and Online-ALP. In this setting, the
goal space is drawn from the BabyAl-Text environment, consisting of five goal categories
of increasing difficulty: Go to "object”, Pick up "object”, Open "door", Put "object A"
next to "object B", and Pick up "object A" then go to "object B". As shown in Figure E.8,
MAGELLAN outperforms Online-ALP, successfully tracking the agent’s competence
progression across the different task categories.

[ —— MAGELLAN Online ALP === True Success Probability
Go to Pickup Open
1.0 1.0 1.0
> > >
= = = -
F 038 Zo08 Z08 -
8 3 8 y
006 006 006 7
.
a a a e
304 % 0.4 704
9] o 9] -
g 9 9 <
> 0.2 > 0.2 > 0.2
(%] wn (%] =
0.0% 10k 15k 20k %0 5k 10k 15k 2ok 20 5k 10k 15k 20k
Episodes Episodes Episodes
Put next to Pickup then go to
1.0 1.0
> >
= =
Zo0s8 Zo0s8
© ©
Q Q
0 0.6 R 006
o - a
B 0.8 e 2 304
[} - [}
o Panl S
5021\ __ex== > 0.2
2] =z (2]
003 5k 10k 15k 2ok 0% 5k 10k 15k 20k
Episodes Episodes

Figure E.8: Competence estimation on BabyAl-Text. MAGELLAN accu-
rately tracks competence across five goal types of increasing difficulty and
consistently outperforms Online-ALP.
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Impact of the LLM used in MAGELLAN

In this section, we compare different LLMs (Flan-T5-small, Flan-T5-base, and Qwen2.5-
0.5B (Qwen et al., 2025)) to evaluate their impact on the competence estimation perfor-
mance of MAGELLAN. The experiments simulate agent learning using two goal spaces:
OpenR1-Math-220k and BabyAI-Text (figures/chapter-5/magellan E.9 and E.10). Results
show that all tested LLMs achieve similar performance, suggesting that MAGELLAN’s
competence estimation remains robust across a range of lightweight language models.
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Figure E.9: Effect of LLM choice on MAGELLAN’s competence estimation
for OpenR1-Math-220k. All models yield similar performance.
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Figure E.10: Effect of LLM choice on MAGELLAN’s competence estimation
for BabyAl-Text. Performance remains consistent across models.
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E.4.3 Q2. Training an LLM-based RL agent with MAGELLAN

We detail in Figure E.11 the evolution of the success rate per method and per goal type.
All methods perform similarly on the type "Grasp". However, MAGELLAN outperforms
all the baselines that do not rely on expert knowledge (Uniform and Online-ALP) on all
other types. Learning dynamics fostered by MAGELLAN are close to the ones generated
with EK-Online-ALP which relies on expert knowledge. Such results hint towards a
clustering of the goal space by MAGELLAN to efficiently and reliably estimate the SR of
the LLM agent. This hypothesis is strengthened by the plot of the embedding space in

Per-goal Success Rate

Appendix E.4.4.
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Goal sampling strategies

We analyze the sampling strategies of the different methods. In Figure E.12, it
appears that MAGELLAN has a sampling strategy close to the one of EK-Online-ALP.
The main difference is that EK-Online-ALP does not select impossible goals thanks
to the use of expert knowledge. MAGELLAN’s sampling strategy quickly begins to
sample goals of type "Grow herbivore" after sampling goals of type "Grow plant", which
contrasts with the strategy of Online-ALP. Indeed, Online-ALP mostly selects goals
already encountered, getting stuck on one goal type before moving to another. The
similarity between MAGELLAN and EK-Online-ALP indicates that MAGELLAN is able
to cluster the goal space dynamically, using this information to generalize its competence
estimation to sample interesting goals not yet discovered. More results on the dynamic
clustering of the goal space by MAGELLAN are given in Appendix E.4.4.
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(a) MAGELLAN’s sampling strategy. (b) EK-Online-ALP’s sampling strategy.
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Figure E.12: Goal sampling strategies of MAGELLAN, EK-Online-ALP,

Online-ALP. We do not take into account the 20% uniformly sampled goals
from the e-greedy exploration.
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E.4.4 Q3. MAGELLAN’s generalization abilities
Per-goal Success Probability estimation on test set

In this section, we provide a detailed analysis of the results presented in Section 5.2.3,
specifically examining the ability to generalize success probability estimations to test
goals across different goal types (see Figure E.13). As expected, Online-ALP exhibits the
largest errors, as it can only assign a success probability of 0 to unseen goals. In contrast,
both MAGELLAN and EK-Online-ALP achieve highly accurate estimations for "Grasp",
"Grow plant", and "Grow herbivore". However, both methods tend to overestimate the
generalization abilities of the policy on "Grow carnivore" goals.
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Figure E.13: Per-goal estimation of the success probability for each method.
The average result (over 8 seed) is the solid line and the shaded zone represents
the standard deviation.
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Evolution of the embeddings

In Section 5.2.3, we present the embedding at the beginning and the end of the
training for the seed 0.% In this section, we explore how the goal space is dynamically
modified throughout training with Figure E.14. It is a chronogram of the embedding
space used by MAGELLAN projected using t-SNE Maaten & Hinton (2008) with the
estimated success probability over the whole space calculated using linear interpolation
with a Gaussian filter. Each embedding (except the first one, which is the initial state) is
plotted after the agent masters a goal category.

e At the beginning, Figure E.14a, no structure is discernible in the goal space and
the estimated success probability is uniform around 0.5.

e After mastering the goals of type "Grasp", Figure E.14b shows several clusters
appeared. All "Grasp" goals are in the same cluster with a high estimated success
probability zone. The goals of type "Grow plant" are also clustered together
and close to the zone of high estimated success probability. That is a hint that
MAGELLAN has already picked them as the next candidate type for the curriculum.
It also correctly places the "Grow plant" goals from the test set in the same cluster
as the ones from the train set. However, it still mixes them with impossible goals,
underlying that it does not fully master this type of goal. The "Grow herbivore"
and "Grow carnivore" are mixed with other impossible goals.

e After achieving mastery of "Grow plant", in Figure E.14c, we see both "Grasp"
and "Grow plant" are correctly clustered in the zone of high success probability,
with the goals from the test set correctly placed into the two clusters. The goals
from the type "Grow herbivore" and "Grow carnivore" are clustered together and
almost separated from the impossible goals. Their cluster is close to the zone of
high estimated probability.

e Once "Grow herbivore" has been solved, we see in Figure E.14d that the three
achieved goal types are clustered in three groups, all in the zone of high estimated
success probability. The "Grow carnivore" are far from this zone but still clustered
together, apart from the impossible ones. It also appears that the model places
"Grow carnivore" goals from the test close to the "Grow herbivore".

e Finally, when the type "Grow carnivore" is mastered, in Figure E.14e, all the goals
from the possible goal types (from both train and test) are placed in the zone of
high success probability. The goals of type "Grow X" form three tightly packed
clusters. The "Grasp" type is separated from the other types.

What is clear from the chronogram is that MAGELLAN’s learning modifies the embedding
space in a way that facilitates prediction of the probability of success.

2The dynamic is the same for the other seeds.
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Figure E.14: Chronogram of the embedding space of the seed 0, at the
beginning and after mastering each type of goal.

Embedding of impossible goals

As detailed in Section E.1.3, a goal is considered impossible either due to the absence
of a required element or when attempting to grow furniture. Accurately identifying
impossible goals and generalizing this knowledge is crucial for strong performance in the
Little-Zoo environment. In this section, we analyze how MAGELLAN handles impossible
goals.

Figure E.15a illustrates the clustering of different categories of impossible goals. The
impossible "Grasp" goals form a compact cluster, while the "Grow" goals—categorized
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as "Grow plant", "Grow herbivore", "Grow carnivore", and "Grow furniture"—exhibit
four less-defined clusters. Additionally, a large, mixed cluster contains various impossible
"Grow" goals. However, when examining the same embeddings through the lens of
missing elements, as shown in Figure E.15, a distinct structure emerges: MAGELLAN
also organizes goals based on the absent element in the scene.

For instance, the previously observed clusters of impossible "Grow" goals largely
align with the "missing water" category, as water is a prerequisite for all "Grow" goals.
Moreover, the central mixed cluster from Figure E.15a is further clustered into sub-
clusters based on the missing element. In particular, the red cluster at the bottom of
Figure E.15 represents the absence of a plant, encompassing both "Grow herbivore" and
"Grow carnivore" goals. This suggests that MAGELLAN effectively captures underlying
environmental dependencies to determine goal feasibility. This ability to infer structural
properties of the environment likely contributes to the strong generalization performance
observed in Section 5.2.3 and Section 5.2.3.

1.0
Impossible Impossible
grasp grow camivore @ Train

A Test

Impossible _ Impossible
grow plant © grow furniture

0.8
Impossible
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Estimated Success Probability
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main item plant item ® Train
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water item
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© herbivore item
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Figure E.15: Plot of the t-SNE-projected embeddings of impossible goals,
where each goal is color-coded based (a) on the type of impossible goal (b)
on the specific missing element required to make it possible.

E.4.5 Q4. Leveraging the generalization abilities when facing new
goals
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10 adaptation cases throughout training

In Section 5.2.3, we present adaptation tests where the goal space evolves by replacing
goals with new unseen goals from similar categories. We conduct the test by training
an agent using MAGELLAN for 500k steps. Then, every 50000 * n episodes (with
n € {1;2;3;4;5;6;7;8;9;10}), we stop training and replace MAGELLAN by one of
the four ALP methods of goal sampling (MAGELLAN, EK-Online-ALP, Online-ALP,
and Uniform). Finally, we resume the training for 50k steps and measure the SR. For
EK-Online-ALP, we make it track the agent’s competence based on goals sampled by
MAGELLAN during the first phase, allowing it to start with an estimation on the new
unseen goals. Our test measures the ability of a method to estimate and quickly update
competence on unseen goals. Figure E.16 details all the results obtained at the ten points
we use in the experiments.

We can divide the different experiments in 2 typical scenarios:

e Scenario zero LP (Figure E.16a): the agent has mastered the "Grasp" and
"Grow plant" goals and has 0 ALP across all goals. In this scenario, all ALP
estimations are equivalent. EK-Online-LLP manages to discover new ALP niches
faster as all impossible goals are in the same group.

e Scenario with LP:

— High LP (figures E.16b, E.16¢c, E.16d): the agent is getting a high ALP
as it is learning some "Grow carnivore" goals. Here, MAGELLAN outperforms
baselines by generalizing its ALP estimation and continuing training on these
goals.

— Medium LP at the end of training (figures E.16e to E.16j): the agent
has almost learned all the goals, and it only remains few goals in the "Grow
carnivore" category on which its performance is not stable. When changing the
goal space, Online-ALP and Uniform take a lot of steps to find the remaining
goals with LP in the new goal space, destabilizing the agent. As a result, the
agent’s SR decreases just after the transition and does not recover after 50k
training epispdes. MAGELLAN and EK-Online-ALP maintain their high SR.

We notice that the learning curve of the agents using MAGELLAN and EK-Online-
ALP are almost identical, but our method does not rely on expert knowledge and
naturally clustered the goal space as seen in Figure 5.11b.

Global Sample Efficiency assessment

To obtain a quantitative analysis of the results from Section 5.2.3, we plot in Figure E.17
the average sample efficiency (after k episodes) of each method, averaged over the 10 tests,
with & € {10000;20000; 30000; 40000; 50000}. The sample efficiency after s episodes is
calculated as ;5 S0 [T SR(50000 % 1+ t) — SR(50000 * n) dt.

n=1J0

We observe that the Uniform method is the only approach exhibiting a negative average
sample efficiency, which is expected since it predominantly samples impossible goals,
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Figure E.16: Adaptation tests: Using a single’s seed training of 500k
episodes, we stop and replace all goals by new unseen goals every 50k
episodes. We then resume training by sampling goals using each of our
four methods’ ALP estimation (MAGELLAN, EK-Online-ALP, Online-ALP,
Uniform) and perform 50k training episodes. We report the evolution of
observed competence (SR) when evaluating the policies on 64 goals per

category from the new training set every 5000 episodes. We report the
average competence over evaluated goals along with standard deviation.

thereby destabilizing the agent. In contrast, the other methods demonstrate increasing
sample efficiency as k progresses, reflecting improved success probability estimation and,
consequently, more effective goal sampling. However, Online-ALP exhibits only a marginal
improvement, as it must continually re-estimate success probabilities across the entire

goal space.

Both MAGELLAN and EK-Online-ALP, which leverage generalization to estimate
success probabilities for novel goals, achieve higher sample efficiency. Notably, EK-
Online-ALP benefits significantly from expert knowledge in clustering the goal space
and identifying impossible goals. However, its strong performance is contingent on the
assumption that new goals belong to the same categories as those in the training set,
which may limit its generalization capacity.
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F.1 Experimental setup

In this section, we provide more details on our experiments.

F.1.1 Maths problems
Rewards

We begin by explaining our reward function R. Given an answer, we first verify that it
matches the expected syntax: (1) the answer is provided between " <answer>X< /answer>"
tags and (2) the answer is a number. If this is not the case, the answer gets a reward of
—2. We then compare the answer with the expected answer by computing their absolute
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difference d and computing the following reward function:

-1 ifd>1073
0.05 ifd > 10"
0.2 ifd<107°
0.5 ifd<10°°
0.8 ifd <1077
1 ifd <1077

When using an LLM to solve operations, we sample at most 20 tokens (with "< /an-
swer>" and the end-of-sequence token stopping the generation), without applying any

specific generation parametrization.

Optimal strategies

We then provide further information on the optimal strategies. For
B €{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}, we compute the theoretical global utility U
of each tool on each operator given that:

e "A" has a rounding precision of 6 on additions, 4 on divisions, and a cost of —0.85
e "B" has a rounding precision of 4 on additions, 5 on divisions, and a cost of —0.025

e "C" has a rounding precision of 5 on additions, 6 on divisions, and a cost of —0.2

We report the per-tool theoretical global utility as a function of 8 in Figure F.1, the
best tool to call in Table F.1, as well as the per-objective theoretical reward in Figure F.2.

Operator: + Operator: /

1.00 — calculatorA 1.00
calculator-B
— calculator-C

0.75
0.50

0.25

Utility
Utility

0.00

~0.25 -0.25

—0.50 —0.50

-0.75
02 0.4 0.6 0.8 10 02 0.4 0.6 0.8 10
B B

Figure F.1: Per-tool theoretical global utility as a function of .
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Table F.1: Theoretical optimal calculator tool to call per operator for 3 €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.

Operator / alpha 0.1 0.2 03 04 0.5 0.6 0.7 08 09 1.0

+ B B B B B B C A A A
/ B B B B C C C C C C
1.00 .\\ —-= Optimal (pareto frontier)
0.95 AN N
oso IR I N \"\\
% 0.85 V\-\
g -\'\
E 0.80 -\'\-
\.
\
0.75 ]

0.70

0.65
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

Tool-use penalty

Figure F.2: Theoretical per-objective performance of the optimal strategy
for g € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}.

F.1.2 MMLU-Pro

We use the MMLU-Pro dataset from Wang et al. (2024d) in our experiments. We
construct our tasks by concatenating the question and four possible answers, each
associated with a letter. These answers are deterministically selected around the ground
truth answer such that all our experiments use the same task spaces 7 and T;.s:. We then
filter out tasks containing more than 600 characters. This threshold has been selected
such that more than 80% of the "test" split tasks are kept (see Figure F.3).

We augment each task’s prompt with the "test" split last sample shown as an example
(see Appendix F.1.4). As for maths problems, we expect the answer to be sent between
"<answer>X< /answer>" tags (with "X" being the answer’s letter). For all LLMs, when
asked to select a problem’s answer, we sample at most 10 tokens (with "< /answer>"
and the end-of-sequence token stopping the generation), without applying any specific
generation parametrization (e.g., nucleus sampling).

In addition to our main LLM, we propose three other LLMs for assistance: Qwen 2.5
14B, Llama 3.1 70B, and Llama expert. The latter is a Llama 3.2 1B that we fine-tuned
to generate the ground truth answer for 20 epochs with LoRA on tasks from both 7 and
Tiest, that belong to the "maths" and "physics" categories. This constitutes a dataset of
2537 tasks.

Regarding the reward functions, we design R to return 1 if the letter between "<an-
swer>< /answer>" tags corresponds to the correct answer’s letter and 0 otherwise. For C,
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Figure F.3: Repartition of MMLU-Pro tasks in the "test" split by their
length.

we apply a per-thousand-tokens-generated cost to each LLM following the cost in dollars
applied by online APIs serving those LLMs (e.g., https://www.helicone.ai/llm-cost):

e Our main LLM (i.e., Llama 3.2 1B or Qwen 2.5 0.5B): 0
e Qwen 2.5 14B: 0.00003
e Llama 3.1 70B: 0.00009

e Llama expert (3.2 1B): 0.000003

We multiply this cost by the number of tokens generated divided by 1000 and rescale this
cost by multiplying it by -10000 to obtain our reward C. Note that in these experiments,
a fixed number of tokens is expected for any LLM’s answer (i.e., the selected answer’s
letter and the "<answer>< /answer>" tags). Consequently, returning an answer that
does not follow the expected format with more tokens will produce a higher penalty.

F.1.3 Methods

This section provides details on the estimators evaluated in this work.

For our two average-based baselines, we do not keep the history of sampled tasks
but rather keep, and directly update, the average utility with each new sample with an
update weight o = 0.2.

For our LLM-based estimator, we use MLPs with two hidden layers of 1024 units
(with sigmoid activations). We keep a buffer H of 1024 tasks and sample a batch of
128 tasks every F' = 32 tasks. We train our estimator on these batches using 4 steps of
gradient descent with a learning rate of 107% and an Adam optimizer.
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F.1.4 Prompts

Here, we provide the prompts given to our LLMs. We first show an example for our
LLM-based estimator with a single head (Figure F.5) and with two heads (Figure F.4)
using separate networks for each arm with a task from MMLU-Pro. We then provide in
Figure F.6, the prompt given to our estimator when using shared networks between arms

(and two heads). This corresponds to "Shared two heads" described in Appendix F.2.

Prompts for maths operations follow the exact same format.

Finally, we provide an example of the prompt given to an LLM when used to solve
a task. Figure F.7 shows an example for maths operations, while Figure F.8 shows
an example for MMLU-Pro. For maths problems, the examples are fixed, while for
MMLU-Pro, the example is the last sample of the dataset’s test split (which we use as
7).

<|begin_of text|>

<|start header id|>system<|end header id|>

You will be asked to solve a task. For this, you have access to multiple LLMs
that will help you solve the task (llama 3-2 1B, qwen 2-5 14B, llama_expert,
llama 3-1 70B). When given a task, you will have to choose which LLM you send
the task to. However, each of these LLMs has a specific cost for calling it. Your
objective is to minimize your answer’s error on a given task (E) while minimizing
the cost used (C).

<|eot_id|>

<|start _header id|>user<|end header id|>

Now let’s solve the following task: You will receive a question along with 4 possible an-
swers. Return the letter associated to the right answer between <answer>< /answer>
markers.

Now, here’s the question you must answer:

Question: Typical advertising regulatory bodies suggest, for example that adverts
must not: encourage , cause unnecessary or
and must not cause offence.

A) Safe practices, Distress, Jealousy, Serious

B) Safe practices, Wants, Fear, Serious

C) Unsafe practices, Wants, Fear, Trivial

D) Unsafe practices, Distress, Fear, Serious

<|eot_id|>

Figure F.4: Example of a prompt given to Llama 3.2 1B to estimate
utilities on a task from MMLU-Pro when using two heads.

F.2 Architectures comparison

In order to implement Ey(7, k, 3), we considered four architectures (see Figure F.9):

e Per-k two heads: Ey(7,k, ) = BRy(7, k) + (1 — 8)Cy(7, k). We use one MLP per
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<|begin_of text|>

<|start _header id|>system<|end header id|>

You will be asked to solve a task. For this, you have access to multiple LLMs
that will help you solve the task (llama 3-2 1B, qwen 2-5 14B, llama_expert,
llama_3-1 70B). When given a task, you will have to choose which LLM you send
the task to. However, each of these LLMs has a specific cost for calling it. Your
objective is to minimize your answer’s error on a given task (E) while minimizing
the cost used (C).

<|eot_id|>

<|start header id|>user<|end header id|>

Now let’s solve the following task: You will receive a question along with 4 possible an-
swers. Return the letter associated to the right answer between <answer>< /answer>
markers.

Now, here’s the question you must answer:

Question: Typical advertising regulatory bodies suggest, for example that adverts
must not: encourage , cause unnecessary or

and must not cause offence.

A) Safe practices, Distress, Jealousy, Serious B) Safe practices, Wants, Fear, Serious
C) Unsafe practices, Wants, Fear, Trivial D) Unsafe practices, Distress, Fear, Serious
Your global performance will be assessed with the following repartition between the
answer’s error E and the cost C: 100.0% on E and 0.0% on C.

<leot_id|>

Figure F.5: Example of a prompt given to Llama 3.2 1B to estimate
utilities on a task from MMLU-Pro when using a single head.

<|begin_of text|>

<|start _header id|>system<|end header id|>

You will be asked to solve a task. For this, you have access to multiple LLMs that
will help you solve the task (llama_3-2 1B, calculator-A, calculator-B, calculator-
C). When given a task, you will have to choose which LLM you send the task to.
However, each of these LLMs has a specific cost for calling it. Your objective is to
minimize your answer’s error on a given task (E) while minimizing the cost used
(C).

<|eot id|>

<|start _header id|>user<|end header id|>

Now let’s solve the following task: You will receive an operation. Compute its
results as precisely as possible and return it between <answer>< /answer> markers.
Now, here’s your task: Compute 49.862056/46.695311.

You call calculator-B.

<|eot_id|>

Figure F.6: Example of a prompt given to Llama 3.2 1B to estimate
calculator-B’s utility on a maths task when using two heads.
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<|begin_of text|>

<|start _header id|>system<|end header id|>

You are an expert at solving maths operations. When provided an operation, respond
with its result.

<|eot_id|>

<|start header id|>user<|end header id|>

You will receive an operation. Compute its results as precisely as possible and return
it between <answer>< /answer> markers.

Here are some examples:

Compute 4.324672+2.

<answer>6.324672< /answer >

Compute 4.324672/2.

<answer>2.162336< /answer>

Now, here’s your task: Compute 49.862056/46.695311

<|eot_id|>

<|start _header id|>assistant<|end header id|>

<answer>

Figure F.7: Example of a prompt given to Llama 3.2 1B to solve a
task from MMLU-Pro.

arm with two heads to estimate R and C separately with 7 provided in the prompt.

See Figure F.9a.

e Per-k one head: Ejy(7,k, ) is computed with an MLP with a single head per arm &
with 7 and S provided in the prompt. See Figure F.9b.

e Shared two heads: Ey(7,k,8) = BRo(7,k) + (1 — B)Cy(7, k). We use an MLP with
two heads to estimate R and C separately, with 7 and k given in the prompt. See
Figure F.9c.

e Shared one head: FEy(7,k,[3) is computed with a single-head feedfoward neural
network with 7, 8, and k provided in the prompt. See Figure F.9d.

We begin by comparing the results of these architectures on maths problems, studying
both their evaluation utility and sample efficiency in Figure F.10. We also compare the
different architectures with and without LoRA (i.e., keeping the LLM frozen). Our results
show that "Per-k two heads" overall leads to the best results on both LLMs. However,
not using LoRA adapters leads to better evaluation utility with high £ values for Llama
3.2 1B, while it leads to worse results with Qwen 2.5 0.5B.

We then look at results on MMLU-Pro problems in Figure F.11 and obtain similar
results. In particular, not using LoRA adapters seems to again lead to better results for
Llama 3.2 1B.
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<|begin_of text|>

<|start _header id|>system<|end header id|>

You are an assistant that helps solving problems ranging from maths to question
answering. You will be given a problem and must answer the correct response.
Follow carefully the instructions on how to format your answer.

<|eot_id|>

<|start header id|>user<|end header id|>

You will receive a question along with 4 possible answers. Return the letter associated
to the right answer between <answer>< /answer> markers.

Here are some examples:

Question: The frequency range of a commercially broadcast FM signal is 88 to 108
MHz, with carrier swing of 125 kHz. Find the percentage modulation of the signal.
A) 83.3%

B) 93.8%

C) 57.1%

D) 100%

<answer>A < /answer>

Now, here’s the question you must answer:

Question: Typical advertising regulatory bodies suggest, for example that adverts
must not: encourage
and must not cause offence.

A) Safe practices, Distress, Jealousy, Serious

B) Safe practices, Wants, Fear, Serious

C) Unsafe practices, Wants, Fear, Trivial

D) Unsafe practices, Distress, Fear, Serious
<|eot_id|>

<|start header id|>assistant<|end header id|>
<answer>

, cause unnecessary or 5

Figure F.8: Example of a prompt given to Llama 3.2 1B to solve a
maths problem.

F.3 Additional results on maths problems

In this section, we provide additional results for our experiments with maths problems
and calculator tools.

F.3.1 Convergence analysis

We show the regret evolution for 5 € {0.2,0.4,0.6,0.8,1} in Figure F.12. All methods
converge to a near-zero regret for 5 < 0.4, as the optimal strategy is the same for both
operators (see Table F.1). However, up to 5 = 0.8, using the same strategies for both
operators still empirically leads to zero regret, as evidenced by the results of "Average"
and Appendix F.3.2. For higher § values, only "Average per-operator" and our approach
converge towards a near-zero regret.

We also show the evolution of the per-arm and per-operator estimated utility for
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Figure F.10: Comparison of the different architectures for Fy(T,k, )
on maths problems. We show the per-objective final evaluation
utility and regret sample efficiency over evaluation tasks for g €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} on maths problems. Results are av-

eraged over 32 evaluation tasks and 4 seeds.

£ =1 in Figure F.13. These results provide more insights as to why our estimator is

slower to converge for 8 = 1: it tends to underestimate the utility of the optimal tool

(i.e., "calculator-A") as this tool is suboptimal for smaller 8 and slowly converges towards

the true utility.

F.3.2 Strategies

In this section, we show the different strategies each estimator evaluated in Section 5.3.3
led to.

We begin by showing the percentage of calls of each arm (i.e., the LLM or the tools)

obtained in the evaluation performed after 2048 tasks in Figure F.14. The results are

aggregated over the four seeds of each experiment. While Table F.1 shows a single



Additional results on MMLU-Pro

0.800 0.800

0.775 0.775

0.750 0.750 L)

e
o
~
G

e

o

=

5
Performance

Performance

0.675 —— Per-k two heads - LoORA 0.675 —— Perk two heads - LoRA
Per-k one head - LoRA

Per-k one head - LoRA
—— Shared two heads - LoRA —— Shared two heads - LoRA
0650 Shared one head - LoRA ° 0650 ymem Shared one head - LoRA
Ours Per-k two heads
0.625 Per-k one head 0.625 Per-k one head
Shared two heads Shared two heads
—— Shared one head —— Shared one head

0.600 0.600
-0.12 -0.10 —0.08 —0.06 —0.04 —0.02 0.00 -0.12 -0.10 —0.08 —0.06 —0.04 —0.02 0.00

Tool-use penalty Tool-use penalty
(a) Evaluation utility of Llama 3.2 1B on (b) Evaluation utility of Qwen 2.5 0.5B on
MMLU-Pro problems. MMLU-Pro problems.

Figure F.11: Comparison of the different architectures for Ey(7,k,3) on
MMLU-Pro problems.

theoretical optimal strategy for each 8 and operator, empirical results from "Average
per-operator" show that multiple optimal strategies exist in some cases (e.g., for both
additions and divisions at f = 0.6). This is explained by the fact that, while the
theoretical rounding precision of each tool is known, some randomly generated operations
can empirically lead to results that are not rounded by a tool (e.g., 8.191039-+5.524591
with "calculator-B" leads to an R = 1 instead of the theoretical R = 0.8). Overall, the
results in Figure F.14 show that our LLM-based estimator consistently leads to similar
strategies to "Average per-operator", showing that the estimator learned to capture how
operators impact tools’ utility.

We also show in Figure F.15 the evolution of the strategy when using our estimator
for f =1.

F.4 Additional results on MMLU-Pro

F.4.1 LLMs performances

In this section, we report the outcome-based reward R over both T ("test" split of
the dataset) and Ty ("validation" split of the dataset) using a single trial and four seeds
for each LLM considered in experiments from Section 5.3.3. We show results in Table F.2
and Table F.3 for the "validation" and "test" splits respectively.

F.4.2 Strategies

In this section, we show the different strategies each estimator evaluated in Section 5.3.3
led to. We report these in Figure F.16, where we show for 5 € {0.2,0.4,0.6,0.8,1} the

percentage of calls of each LLM, obtained in the evaluation performed after 2048 tasks.

The results are aggregated over the four seeds of each experiment.
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Figure F.12: Regret evolution on evaluation tasks for 8 € {0.2,0.4,0.6,0.8,1}.
Results are averaged over 32 evaluation tasks and 4 seeds.
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Figure F.13: Evolution of estimated utilities on evaluation tasks for each
arm with 8 = 1. Results are averaged over 32 evaluation tasks and 4 seeds.

Table F.2: Performance on R over MMLU-Pro "validation" split (used as
evaluation set) using four seeds with one trial per problem. We report the
average result and standard deviation.

Domain Llama 3.2 1B Llama 3.1 70B Qwen 2.5 14B Qwen 2.5 0.5B Llama expert
biology 0.0 (£0.0) 1.0 (£0.0) 0.59 (£0.49) 0.0 (£0.0) 0.8 (£0.4)
business 0.12 (£0.32) 0.88 (£0.32) 0.55 (£0.5) 0.0 (£0.0) 0.95 (£0.22)
chemistry 0.0 (40.0) 0.44 (£0.5) 0.4 (£0.49) 0.0 (£0.0) 0.6 (£0.49)
computer science 0.0 (£0.0) 1.0 (40.0) 0.44 (£0.5) 0.0 (£0.0) 0.45 (+0.5)
economics 0.0 (£0.0) 0.96 (+0.2) 0.6 (£0.49) 0.0 (£0.0) 0.8 (£0.4)
engineering 0.0 (£0.0) 0.32 (£0.47) 0.11 (£0.31) 0.0 (£0.0) 0.8 (£0.4)
health 0.04 (£0.2) 0.44 (£0.5) 0.43 (£0.5) 0.0 (£0.0) 0.74 (£0.44)
history 0.0 (£0.0) 0.5 (£0.5) 0.25 (£0.43) 0.0 (£0.0) 0.5 (£0.5)
law 0.05 (£0.22) 0.75 (40.43) 0.55 (£0.5) 0.0 (£0.0) 0.5 (£0.5)
math 0.0 (£0.0) 0.8 (£0.4) 0.45 (£0.5) 0.0 (£0.0) 1.0 (£0.0)
other 0.16 (£0.37) 0.8 (40.4) 0.8 (£0.4) 0.0 (£0.0) 0.6 (£0.49)
philosophy 0.04 (£0.2) 0.84 (40.37) 0.42 (40.49) 0.0 (£0.0) 0.4 (£0.49)
physics 0.0 (£0.0) 0.5 (£0.5) 0.74 (£0.44) 0.0 (£0.0) 1.0 (40.0)
psychology 0.0 (£0.0) 1.0 (%0.0) 0.61 (£0.49) 0.0 (£0.0) 0.15 (£0.36)
Total 0.03 (£0.0) 0.74 (£0.0) 0.5 (+£0.01) 0.0 (£0.0) 0.67 (+£0.01)
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Results are averaged over 32 evaluation tasks and 4 seeds.

F



Additional results on MMLU-Pro

100

80

60

40

Percentage of tasks

20

0

100

80

60

40

Percentage of tasks

20

0

0

Evaluation per-operator tool use

HAL

— calculator-A
calculator-B
calculator-C

— llama_3-2_1B

A A

250

500 750 1000

Episodes

1250

1500 1750 2000

Percentage of tasks

100

80

60

40

20

calculator-A
calculator-B
calculator-C
llama_3-2_1B

Nlla en

0

0 250 500

(a) Llama 3.2 1B

Evaluation per-operator tool use

calculator-A
calculator-B
calculator-C
qwen_2-5_0-5B

1Y

250

500 750 1000

Episodes

1250

1500 1750 2000

Percentage of tasks

100

80

60

40

20

750

— calculator-A
— calculator-B
— calculator-C
— gwen_2-5 0-5B

1000 1250
Episodes

A

1500

1750 2000

0
0 250

500

(b) Qwen 2.5 0.5B

750

1000 1250
Episodes

1500

1750 2000

Figure F.15: Evolution of tools called by our approach during evaluation for
B =1 (averaged over 32 evaluation tasks and 4 seeds).

Table F.3: Performance on R over MMLU-Pro "test" split (used as T) using
four seeds with one trial per problem. We report the average result and
standard deviation.

Domain Llama 3.2 1B Llama 3.1 70B Qwen 2.5 14B Qwen 2.5 0.5B Llama expert
biology 0.03 (+0.16) 0.89 (+0.32) 0.82 (+0.38) 0.0 (£0.06) 0.61 (£+0.49)
business 0.02 (4+0.13) 0.48 (£0.5) 0.47 (£0.5) 0.0 (£0.0) 0.66 (+0.48)
chemistry 0.0 (£0.0) 0.43 (40.49) 0.4 (£0.49) 0.0 (£0.03) 0.59 (+0.49)
computer science 0.0 (£0.05) 0.65 (+0.48) 0.57 (£0.5) 0.0 (£0.05) 0.58 (£0.49)
economics 0.0 (£0.04) 0.8 (£0.4) 0.75 (£0.43) 0.01 (£0.09) 0.6 (£0.49)
engineering 0.02 (+0.15) 0.5 (£0.5) 0.39 (£0.49) 0.0 (£0.0) 0.64 (£0.48)
health 0.02 (+0.13) 0.77 (4+0.42) 0.69 (£0.46) 0.01 (£0.08) 0.58 (£0.49)
history 0.04 (4+0.2) 0.84 (+0.36) 0.72 (£0.45) 0.0 (£0.0) 0.52 (£0.5)
law 0.01 (40.08) 0.68 (+0.47) 0.57 (£0.49) 0.0 (£0.0) 0.6 (£0.49)
math 0.0 (£0.0) 0.52 (40.5) 0.5 (£0.5) 0.0 (£0.05) 0.99 (+0.11)
other 0.03 (+0.18) 0.71 (40.46) 0.64 (£0.48) 0.0 (£0.0) 0.58 (+0.49)
philosophy 0.02 (£0.15) 0.68 (10.47) 0.61 (£0.49) 0.0 (£0.05) 0.54 (+0.5)
physics 0.0 (£0.05) 0.48 (+0.5) 0.47 (£0.5) 0.0 (£0.0) 1.0 (£0.07)
psychology 0.02 (40.13) 0.84 (40.37) 0.79 (£0.41) 0.01 (£0.1) 0.57 (£0.49)
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Results are averaged over 64 evaluation tasks and 4 seeds.
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Jack of All Trades, Master of Some, a
Multi-Purpose Transformer Agent
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G.1 Introduction

Machine learning researchers have long aimed to develop versatile models that can
adapt seamlessly to different domains. The recent success of transformers (Vaswani et al.,
2017) in NLP, computer vision (CV), and to some extent in RL, has opened new avenues
in this quest. In this work, we attempt to extend the boundaries of this success by
proposing a single, unified model capable of operating across a wide range of NLP, CV,
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and RL tasks using a single set of parameters. This effort not only seeks to challenge the
conventional compartmentalization of Al tasks into distinct domains but also aims to
establish a more holistic approach to Al model design.

While combining visual and textual tasks has been well-researched, integrating RL
tasks remains relatively unexplored and poses distinct challenges. RL tasks are inherently
diverse and heterogeneous, making their combination among themselves and with other
domains a highly complex exercise. This integration requires dealing with a landscape
of different modalities, task complexities, and data volumes across domains and tasks.
New questions that arise include: (1) How to design a model and learning method that
effectively handles different modalities and data types (sequential decision-making and
text-centric)? (2) How to formulate a learning objective that appropriately balances
and harmonizes the different modalities, tasks, and domains without bias toward any
particular domain or task? (3) How to design a learning strategy that can accommodate
the different levels of complexity inherent in different tasks?

These goals are concurrent and, to our knowledge, have only been addressed together
by Reed et al. (2022) with the Gato model. Our contributions are characterized by
three major advances: (1) Our model features an innovative structure optimized for
sequential decision-making tasks. It uniquely assigns each timestep to a corresponding
token embedding, resulting in a simpler design. This approach significantly expands the
attention window in terms of timesteps compared to Gato (e.g., it is 19 times larger for
Atari and more than 25 times larger for Meta-World). (2) In the spirit of open source, we
release our code, dataset, and model to the research community. (3) We add observation
prediction as an auxiliary task to our model. We demonstrate that this integration
significantly contributes to learning a more efficient agent.

Ultimately, our JAT model achieves competitive results on the tasks studied, while
being more than 6 times smaller than Gato and relying on a significantly lower training
budget. As mentioned above, this new paradigm raises a number of open questions and
paves the way for new research. We present a first milestone in this emerging framework
and acknowledge the significant potential for improved results.

G.2 Related work
G.2.1 Transformer for RL

Transformer models (Vaswani et al., 2017) are designed to model sequences and, in
particular, sequences of words in natural language. However, sequence modeling problems
span over a much larger set of domains than only NLP. Several efforts have been made
to leverage these models for RL (Li et al., 2023b). In this paper, we focus on modeling
RL trajectories (i.e., sequences of observations, actions, and rewards). Modeling such
sequences with a transformer was introduced by Chen et al. (2021) and the Decision
Transformer (DT) model. In DT, a transformer model is trained with offline RL to take
sequences of transitions as input and predict the next action. In particular, Chen et al.
(2021) proposed to use returns-to-go (i.e., the return from the current state) to condition
actions’ generation on both the previous observation and the desired return-to-go. While
this has the advantage of explicitly modeling the relations between action selection and
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return, using the model at inference requires providing, at every step, a desired return.
Liu & Abbeel (2023) proposed to extend this by using hindsight relabeling to better
exploit sub-optimal trajectories. Zheng et al. (2022) also extended the DT approach by
mixing offline pre-training and online fine-tuning. Finally, Lee et al. (2022) studied how
the DT approach scales to a multi-task RL setup where a single policy is learned for
multiple games. In terms of sequence structure, some discretize each dimension of the
observation and action spaces separately (Reed et al., 2022; Janner et al., 2021; Chebotar
et al., 2023), while others associate an embedding with each element of the sequence
(Chen et al., 2021; Zheng et al., 2022).

Our work lies in this line of work, as it also leverages transformers to model trajectories.
However, our approach (1) uses standard behavioral cloning (BC) instead of conditional
BC, relaxing the need to condition the agent by the return-to-go and (2) models a
multi-task dataset in which sequences come from very different domains (e.g., control,
Atari, visual question answering, see Section G.3.2).

G.2.2 Multimodal transformer

Apart from being widely used in NLP, transformers also thrive in vision and vision-
and-language domains. As one of the first works leveraging transformers for vision,
Dosovitskiy et al. (2020) introduced Vision Transformer (ViT), a transformer model using
image patches for recognition. Following this, a line of work aiming to train multimodal
transformers using both text and images emerged, including works such as Flamingo
(Alayrac et al., 2022), PaLI (Chen et al., 2023) or IDEFICS (Laurengon et al., 2023). All
these models imply the use of an image encoder to obtain image tokens or embeddings
that can be given to the transformer alongside text tokens.

These models, typically generating text outputs, are trained for vision-and-language
tasks like Visual Q& A. However, recent multimodal transformers focus on decision-making.
For example, Jiang et al. (2023b) trained a robot with imitation learning using multimodal
prompts to produce motor actions. RT-1 (Brohan et al., 2023) and RT-2 (Zitkovich et al.,
2023) use expert demonstrations for real-world robots, with RT-2 building on RT-1 by
directly outputting motor actions. Palm-E (Driess et al., 2023) leverages a pre-trained
vision language model (VLM) for robotics tasks, producing sequences of text instructions
executed by control policies.

Finally, our approach is largely inspired by Gato (Reed et al., 2022), which proposed
to train a transformer on both vision-and-language and decision-making tasks without
relying on any pre-trained model. The resulting model is therefore smaller than the ones
leveraging large VLMs (e.g., Palm-E, RT-2) while still being able to perform both vision-
and-language and decision-making tasks. In this paper, we first propose to build a dataset
that resembles Gato’s dataset, except we only use open-source data sources and release
all demonstrations, as well as expert policies we used to obtain these demonstrations.
Then, we also leverage a multimodal transformer along with imitation learning for our
model, but introduce several improvements, notably in the processing of sequential data
and support for continuous values (see Section G.3.1).
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G.2.3 Multi-task RL

The quest for a general agent has long been a goal of RL (Bellemare et al., 2013).
However, most works have chosen to use a different neural network for each environment.
Recent research has revived interest in this objective and explores it through several
approaches.

One such approach involves directly extending online learning to multi-task environ-
ments (Espeholt et al., 2018; Yu et al., 2020; Song et al., 2020a). These works highlight
the potential for positive transfer in multi-task learning, meaning that learning across
tasks can be mutually beneficial due to underlying commonalities. However, they also
acknowledge the risk of negative transfer, where inter-task interference can impair training.
Studies have investigated methods to limit this risk, such as that by Yang et al. (2020),
which proposed refined gradient management techniques to mitigate these detrimental
effects.

An alternative approach is policy distillation, which involves condensing the behaviors
of expert agents into a singular, unified policy (Rusu et al., 2016; Parisotto et al., 2016).
While these studies also report positive transfer across tasks (Rusu et al., 2016), they
also identify instances of negative transfer. Subsequent research has focused on strategies
to minimize this negative transfer (Teh et al., 2017). The reliance on the availability of
policies to distill is a limitation. This constraint is notably addressed in (Chen et al.,
2021), which proposes conditioning the distilled policy on the desired return thus allowing
the use of any policy, including those of non-expert agents. This strategy has been
adapted to the multi-task setting by Lee et al. (2022).

Despite the diversity of research in this area, most studies are limited to multi-task
learning within a single domain, in comparison to the Gato model (Reed et al., 2022),
which learns a large number of domains in a single network. It is the closest baseline to
our work.

G.3 Methodology

In this section, we introduce the JAT model, detailing our architectural choices that
underpin its effectiveness and highlighting its ability to handle different modalities in
sequential decision-making and text-centric tasks. We present the associated dataset,
which is notable for its groundbreaking diversity across domains and modalities. Finally,
we discuss the learning strategy used in depth.

G.3.1 Model architecture
Embedding mechanism

The model is designed to handle two main categories of data: tasks involving sequential
decision-making and text-centric tasks. In text-centric tasks, the model currently supports
two modalities: text and image. Although the current version of the model supports
image generation, we focus only on tasks that involve text generation. To ease reading,
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we will refer to it as text-centric tasks in the remainder of this paper. Each of these two
categories requires a slightly different approach to the embedding process.

In both cases, the resulting sequence is truncated to match the maximum permissible
input size of the inner transformer model. Any truncated portion is not discarded; instead,
it forms the basis of a new sample. This process may be repeated if necessary, ensuring
that no valuable information is lost.

Sequential decision-making tasks — For sequential decision-making tasks, the
data comprises a sequence of observations, actions, and rewards. At the embedding
stage, these sequences are processed to produce an interleaved sequence of observation
embeddings (augmented with the corresponding reward) and action embeddings, denoted
as [¢(s0,0.0), ¢(ao), ¢(s1,71), ¢(a1),...]. Unlike DT (Chen et al., 2021) and Gato (Reed
et al., 2022), each timestep is consistently associated with two embeddings: one for the
observation and the other for the action, regardless of the modality. This enables JAT
to better handle high-dimensional observations, and to provide a much wider, constant
attention window in terms of timesteps. As an example, this multiplies the size of the
attention window in terms of timesteps by more than 25 for Meta-World. The embedding
method employed at a specific timestep is modality-dependent (with H the hidden size of
the model):

e Continuous observation: The reward value is appended to the observation vector. This
augmented vector is then padded to achieve a uniform length of 377, corresponding
to the maximum augmented observation size in the dataset. The embedding vector is
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subsequently obtained by passing this padded vector through a linear layer with an
output size of H. This layer is consistently used across all timesteps.

e Discrete observation: The observation consists of a vector of integers, each of which is
encoded into a continuous vector of size H using a lookup table. Subsequently, a linear
layer is applied to reduce the dimensionality to | H/50]. Following vector flattening,
another linear layer is applied, resulting in an output size of H — 1. Lastly, the reward
is added to the resulting vector.

e Image observation: The input image is first resized to a uniform dimension of 84 x 84
using bicubic approximation, normalized, and padded to ensure 4 channels. The image
encoder consists of a series of three blocks, each consisting of a convolutional layer, an
instance normalization layer, and an attention layer. The output of the last block is
flattened and passed through a linear layer, resulting in an embedding vector of size H.

e Continuous action: The process is similar to that of continuous observations, with the
exception of the reward component. Notably, the linear layer is shared with the one
used for continuous observations.

e Discrete action: In the case of discrete actions, the process is slightly different due
to the nature of the input: a discrete action is represented by a single integer, as
opposed to a vector of integers for discrete observations. The input is directly mapped
to a continuous vector of size H using the same lookup table employed for discrete
observations.

Text-centric tasks — TFor text-centric tasks, each sample includes text, accompanied
or not by an image.

e Image data: We employ the ViT architecture, as originally proposed by Dosovitskiy
et al. (2020). The image is first cropped to its central square, and resized to 224 x 224.
The image is then normalized and divided into non-overlapping patches of 16 x 16.
Each patch is linearly embedded in a vector of size H.

e Text data: We use the GPT-2 tokenization strategy (Radford et al., 2019), utilizing
a byte-pair encoding (Sennrich et al., 2016, BPE) specifically designed for unicode
characters. This approach ensures comprehensive and granular tokenization. The
tokenizer produces a vocabulary of 50,257 tokens. For efficient implementation, we use
the Hugging Face integration. Each token is mapped to an embedding vector using a
lookup table, where each unique token in the vocabulary is associated with a distinct
vector. Notably, this lookup table is shared with the one employed for discrete values
in sequential decision-making tasks.

When a sample includes both images and text, the embeddings are arranged so that
the image embeddings precede the text embeddings. This specific order is essential for
image captioning task because of the causal masking applied by the model’s internal
transformer. The concatenated image-text embeddings form a unified representation for
subsequent processing steps.

Transformer architecture

The JAT model is based on a transformer architecture using EleutherAl’s implemen-
tation of GPT-Neo (Black et al., 2022). It takes as input the embedding sequence whose
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computation was described in the previous section. The model uses a dual attention
mechanism whose design is inspired by the Longformer (Beltagy et al., 2020): global
attention with a window size of 512 tokens for full context understanding, and local
attention with a fixed window of 256 tokens. The transformer’s feed-forward components
consist of 12 layers and 12 heads with an intermediate dimensionality of 8192 and a
hidden size of 768. They are designed to be causal, meaning a causal mask is applied
during training and inference.

Output processing and loss

The internal causal transformer outputs a sequence of embeddings, each encoding
the basis for predicting subsequent elements in different data modalities. As we predict
multiple modalities within a single sequence, we use the appropriate decoders and
corresponding loss functions for each modality. When an embedding encodes an image,
we use a transposed convolutional neural network (Zeiler et al., 2010) for prediction.
When an embedding represents a continuous vector, we use a continuous linear layer for
prediction. For both image and continuous vector prediction, we compute the loss using
Mean Square Error (MSE). When an embedding represents a discrete value, we assign
scores to each discrete candidate using a linear projection layer and compute the loss
using cross-entropy. Notably, we use the same projection layer for text tokens and discrete
sequential values (like action for Atari and BabyAlI). To compute the overall loss of the
sequence, we average the individual losses computed for each element. For sequential
decision-making task, we apply a weighting between the loss related to observations and
the loss related to actions. We show in Section .4.3 that predicting the observations
does help learning, and thereby solves one of the common open questions of (Chen et al.,
2021) and (Reed et al., 2022).

G.3.2 Datasets

In this work, we have collected a wide range of datasets, classified into two main groups:
sequential decision-making datasets and textual datasets. The former includes a series of
interaction sequences, each consisting of observations, actions, and subsequent rewards,
generated by so-called expert agents, details of which are given in the Appendix G.7. The
latter includes large corpora of textual data and image-text pairs. In order to promote
the emerging field of general-purpose Al models, we have made these datasets, together
with the expert agents and the full set of code required to generate them, available to the
public as open resources in our Hugging Face repository, accessible at the following URL
https://huggingface.co/jat-project. To the best of our knowledge, this compilation
is unprecedented in terms of the variety of tasks and the volume of data, representing a
valuable new contribution to the field.

G.3.3 Training
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Overall training procedure

The model was trained for 250,000 steps. We distributed the training across 8 GPUs
NVIDIA V100 using the Trainer from the Hugging Face Transformers library (Wolf et al.,
2020) in conjunction with Accelerate. This training lasted approximately 9 days. For
practical reasons, each batch is made up of data from a single dataset. We use a constant
batch size of 20 and accumulate over 2 steps, resulting in an effective batch size of 320.
We use the AdamW optimizer with parameters 8; = 0.9, 3, = 0.999, and € = 1078, The
learning rate starts at 5-107° and linearly decays to zero throughout the training process.

Task-specific weight adjustments

Each task presents a unique training challenge. To allow for balanced learning of
all tasks, we introduced custom weight modifications. The choice of these weights is
made heuristically. The learning would surely benefit from a more precise and systematic
method for choosing these weights.

Sample weight Some tasks required more updates for effective convergence. To
allow proportionate progress of all tasks during learning, these tasks are sampled more
frequently. Specifically, Oscar, Conceptual-Captions, and Wikipedia were assigned a
sample weight of 10.0, while others have a sample weight of 1.0.

Loss weight Some control tasks require increased accuracy of actions. To allow for
more strongly penalizing the error for these tasks, we assigned loss weights. In MuJoCo
tasks, the loss weight is typically set at 10.0, except for the Pendulum task (20.0) and the
Double Pendulum task (50.0). In Meta-World tasks, a uniform loss weight of 50.0 is used.

G.4 Experiments and results

In this section, we discuss the results of our experiments. First, we provide a brief
overview of the model’s performance on text-centric tasks. We then present the results
of the sequential decision-making tasks, showing the different levels of mastery across
the different domains within our study. Finally, we provide a comprehensive analysis
highlighting the benefits of incorporating the prediction of the next observation as an
auxiliary task during the learning process.

G.4.1 Text-centric tasks

We present a showcase of JAT’s capabilities, with a particular focus on text completion
and image captioning. It’s important to note that JAT is much smaller and has a much
lower training budget than the specialized models for these tasks. Therefore, instead of
comparing it to these expert systems, we want to demonstrate its intrinsic capabilities.
Figure G.2 shows a selection of captioning results to illustrate how the model interprets
and describes visual data. Additional examples are given in Appendix G.8. Figure G.3,
meanwhile, shows a series of text-based interactions that provide insight into its ability
to complete text prompts. These examples were chosen to highlight the model’s basic



Experiments and results

the flag was removed : and beverage type at : the food is good for the
from the building after ~ the beach. here are some body! :) - a-baked
the fire broke out of the most beautiful chicken. person. photo by
things i have ever seen. author

Figure G.2: JAT image captioning examples. The theme is usually correct,
although the relevance is sometimes limited.

capabilities in these areas, providing a realistic view of its current state of development
and potential for future enhancements. In addition, we provide a demos' for direct
interaction and experimentation, allowing users to experience its functionalities.

INPUT MODEL COMPLETION

The weather today is a great time to the city of New York City. The city is a great place
to stay in.

In the future, cars will be able to drive cars to the market. The new car will be built in the
new market for the new car.

My favorite book is  a book by the author of the book.

Figure G.3: JAT text completion examples. The syntax is generally correct,
the completion is on-topic, although the generated text may be wrong.

G.4.2 Sequential decision-making tasks

We save checkpoints regularly during training. We evaluate each checkpoint on all the
tasks on which it has been trained. Unlike Gato, the evaluation does not require any data
to be used as a prompt. We show empirically in Appendix G.9 that despite the absence
of a prompt, and even in the worst case of our study, the agent still manages to identify
the requested task. For each task, we collect 10 evaluation episodes and normalize by
the average expert score of the dataset for this task. For the final checkpoint, we use 100
evaluation episodes. We then aggregate the results by domain. Figure G.4 shows the
evolution of the aggregate score for each domain during learning, and Figure G.5 focuses
on Atari, showing the human normalized score for each environment. The final results
are presented in detail in Appendix G.6.

The final agent achieves an average expert normalized interquartile mean (IQM) of
65.8%), demonstrating the network’s ability to effectively mimic expert agents across a

https://huggingface.co/spaces/jat-project/text-completion
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Figure G.5: Human normalized scores for the JAT agent on the Atari 57
benchmark.

wide range of tasks. The agent achieves 14.1% of the expert’s score on the Atari 57
benchmark, corresponding to 37.6% of human performance, and exceeding the average
human level in 21 games. For the BabyAl benchmark, JAT achieves a normalized score
of 99.0%. This score falls below 50% for only one task, namely Move Two Across S8N9.
For this benchmark, however, there is no guarantee that the expert score can be achieved,
since the bot used for dataset collection has access to the full state of the environment,
while the interacting agents only have access to a partial observation. Finally, in the
MuJoCo and Meta-World, JAT records scores of 84.8% and 65.5%, respectively. Although
JAT reaches expert level for a fair number of Meta-World tasks, we note that some,
such as basketball, have not been learned at all. Insofar as the action and observation
spaces are identical for all tasks in this benchmark, these failures may be due to task
indeterminacy, which we explore in more detail in Appendix G.9. Future research will
have to confirm this hypothesis. We also note that some domains are mastered more
quickly than others; in particular, BabyAl achieves a score of 90% after only 30,000
learning steps. We hypothesize that the high semantic similarity of the tasks enables a
strong positive transfer, without, however, providing any proof of this. The Appendix
G.6 presents the final results in detail.

Although the results achieved are commendable, for a fair comparison, we limit our
benchmarking to Gato only, as it is the only truly comparable baseline. Reed et al. (2022)
present results only for the 1.18 billion parameter version of Gato, which is 6 times larger
than JAT. Its results are normalized to expert performance. Since we don’t have access
to the normalization parameters, we estimated scores for the random agents, which may
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not be exactly the same as those used by Reed et al. (2022), and used our expert scores
for normalization, even though they obviously do not match those used by Reed et al.
(2022). Therefore, comparisons of these normalized scores should be interpreted with
great caution. On the Atari benchmark, JAT achieves an average normalized score of
31.1% outperforming Gato, which reports a score of 30.9%. For BabyAl, JAT achieves an
average normalized score of 86.2%, close to the Gato score of 93.2%. Our study, however,
is made with 39 tasks versus the 46 used in Gato’s training, with the specific seven
additional tasks in their study remaining unidentified. Since our evaluation includes all
of the hardest tasks mentioned in their study, the seven missing tasks are likely to be
easier, suggesting a harder test scenario in our study. For Meta-World, JAT achieves an
average normalized score of 62.8%, which is below the 87.0% reported for Gato. On the
MuJoCo benchmark, JAT achieves an average normalized score of 73.6%. While Gato’s
training doesn’t use MuJoCo, it’s worth noting that they use the DMC benchmark, which
shares some similarities. For reference, on the DMC benchmark (Tassa et al., 2018), Gato
achieves an average score of 63.6%.

G.4.3 Predicting the observations does help

The model’s main task is to predict the actions that maximize the sum of future rewards.

Its ability to predict future observations is therefore not the main concern. However, can
this ability contribute to better prediction of actions or accelerate the learning process?
Two contrasting hypotheses emerge: firstly, learning to predict observations could serve
as an auxiliary objective, directing the learning process towards a deeper understanding
of the environment, which could lead to improved and faster learning. Conversely, this
prediction learning could serve as a distracting objective: instead of excelling in action
prediction, the model might only achieve moderate performance in both action and
observation prediction. This could slow down the learning process, resulting in a lower
overall performance score. Reed et al. (2022) choose not to predict the observation, but
does not study the influence of this prediction on learning.

To answer this question, we use a loss function that combines observation loss (Lops)
and action loss (L, ), balanced by a weighting parameter . The function is defined as:

L=k Lops+ (1—K) Lot (G.1)

We select a range of values for x and train the model on a subset of 6 dataset
tasks from different domains (Freeway, Pong, ButtonPressWall, WindowClose, Ant and
DoublelnvertedPendulum). Figure G.6 compares the results at the end of training for the
different values of k.

In our study of the k coefficient and its impact on learning, we find an interesting
balance. When set to the highest value in our range (k = 0.5), the learning process
seems to be somewhat hindered by the additional objective. On the other hand, at
lower k values, this added task of predicting observations doesn’t significantly impact
learning, leading to scores that are similar to the base score of 94.5 + 1.1%, which we
get when predicting observations isn’t part of the objective. The sweet spot appears
to be around « = 0.005. Learning to predict observations doesn’t distract but actually

improves the agent’s learning efficiency, achieving a near-optimal score of 99.1 + 0.4%.
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Figure G.6: Aggregate measures with 95% CIs for the study on the influence
of observation prediction learning for selected tasks. The results presented
cover the selected range of k values and are based on 100 evaluations per
task. Optimal k selection can significantly improve agent performance.

This finding highlights that adding observation prediction into the learning process is
beneficial, provided it’s balanced correctly.

G.5 Conclusion

In this study, we introduced JAT, a novel multimodal framework for general RL
agents. JAT features the ability to handle diverse tasks of varying complexity using a
single set of parameters. Its innovations include a new transformer-based structure that
efficiently addresses sequential decision-making, CV, and NLP tasks. We also show that
joint learning of observation prediction significantly improves performance in sequential
decision-making tasks. We’ve open-sourced our training dataset, which includes a wide
range of sequential decision-making data as well as extensive language and visual data.

We believe that JAT represents an important and valuable step towards general-purpose
RL models.

This study reveals several avenues for improvement. A primary challenge is the joint
learning of tasks characterized by high heterogeneity. Our dataset features variations in
size, task complexity, and accuracy requirements for optimal performance. Our current
approach, which uses basic sample and loss weighting, partially addresses this challenge.
A refinement of task sampling could potentially account for task difficulty or impact on
the model’s improvement. For this, Automatic Curriculum Learning methods, discussed
in Chapter 5 as well as Appendix H, might prove useful.

Another important challenge lies in the use of imitation learning. First, improving
the quality of expert data presents a clear opportunity for progress. For instance, in
the Asterix task, our model’s expert score (3699.6) remains far below that of specialized
agents such as R2D2 (999,153.3) (Kapturowski et al., 2019). Leveraging the strongest RL
agent available for each individual task could significantly raise the quality of our dataset,
and in turn, improve the performance of the distilled generalist agent. Furthermore, while
our current method employs basic BC, incorporating more advanced imitation learning
techniques could yield further gains. More importantly, as discussed throughout this
manuscript, active learning through interaction with an environment is key—whereas
imitation learning comes with inherent limitations. Across multiple contributions, we
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emphasized how RL and direct interaction drive the acquisition of functional competence
in language processing. Although JAT focuses solely on pre-training, a natural next step

would be to fine-tune the model using RL via online interactions across multiple domains.

G.6 Full results

This appendix contains a detailed view of the results of the trained JAT agent. The
score of the random agent for Atari games is sourced from (Mnih et al., 2015). In other
domains, this score is approximated by averaging the returns from 1,000 episodes, where
the agent selects actions uniformly across its action space. The expert scores represent
the average return in the dataset for the task. Meanwhile, the raw score is the average
return achieved by the trained agent, based on 100 evaluation episodes. Both these
scores, along with the trained agent, are accessible as open-source?. The normalized
score is derived by comparing the agent’s return to the expert’s, calculated using the

score—random score

formula: . It’s important to note that in instances where the expert,

expert_score—random_score
inaccurately named, does not fully master the task and thus scores similarly or lower
than the random agent, the normalized score must be interpreted cautiously. Specifically,
if this score falls below that of the random agent, as in the case of Bowling, normalization
is not applied. The results for Atari are presented in Table G.1 and Figure G.7, for
BabyAl in Table G.2 and Figure G.8, for Meta-World in Table G.3 and Figure G.9, and

for MuJoCo in Table G.4 and Figure G.10.

’https://huggingface.co/jat-project/jat
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Table G.1: Comparison of performance scores across tasks on Atari 57. The
table presents the episodic return (score) achieved by a random agent (from
(Mnih et al., 2015)), scores of the expert agent (as averaged from the dataset),

scores of the learned agent, and the expert normalized score calculated as
scorefrandomiscore

expert score—random score "

Task Random agent Expert JAT (raw) JAT (normalized)
Alien 227.8 16912.5 4+ 7087.4 1474.9 + 588.7 0.07 £ 0.04
Amidar 5.8 2164.7 + 1229.5 104.9 £ 103.5 0.05 £ 0.05
Assault 222.4 15699.1 4+ 9572.1 1650.1 + 821.0 0.09 £+ 0.05
Asterix 210.0 3699.6 + 2421.3 800.0 + 584.9 0.17 £ 0.17
Asteroids 719.0 177011.1 £ 35334.2 1385.3 + 507.5 0.00 £ 0.00
Atlantis 12850.0 320679.6 + 418247.4 66980.0 + 158449.7 0.18 £ 0.51
Bank Heist 14.2 1322.4 + 60.8 948.3 + 199.9 0.71 £ 0.15
Battle Zone 236.0 295592.6 + 161961.0 17420.0 4+ 6071.5 0.06 £+ 0.02
Beam Rider 363.9 29589.3 + 16133.0 797.3 4+ 328.3 0.01 £ 0.01
Berzerk 123.7 57085.3 £+ 13104.5 687.3 + 331.9 0.01 £ 0.01
Bowling 23.1 204 + 7.3 224+ 5.6 N/A
Boxing 0.1 98.0 £ 3.8 90.1 £ 23.0 0.92 £+ 0.24
Breakout 1.7 703.0 4+ 203.6 8.8 + 5.6 0.01 £+ 0.01
Centipede 2090.9 11624.3 £+ 4918.3 5589.9 + 2567.3 0.37 £ 0.27
Chopper Command 811.0 90990.6 £ 270876.9 2417.0 £+ 1489.9 0.02 £ 0.02
Crazy Climber 10780.5 179296.9 + 39862.1 97639.0 £ 26184.7 0.52 £+ 0.16
Defender 2874.5 351958.3 + 40466.8 39323.5 £ 15203.0 0.10 £ 0.04
Demon Attack 152.1 92195.2 + 26174.8 815.3 + 989.7 0.01 £ 0.01
Double Dunk -18.6 20.9 + 3.6 14.4 + 10.0 0.84 £ 0.25
Enduro 0.0 2292.2 £+ 147.5 108.5 £ 42.7 0.05 £ 0.02
Fishing Derby -91.7 7.2 £ 25.1 -30.4 £+ 24.4 0.62 £ 0.25
Freeway 0.0 33.9 £ 0.3 27.5 + 1.6 0.81 £ 0.05
Frostbite 65.2 13196.1 + 4341.0 2769.6 + 1445.6 0.21 £ 0.11
Gopher 257.6 81676.2 £+ 46329.5 5340.6 £+ 2547.1 0.06 £+ 0.03
Gravitar 173.0 3986.6 + 1729.0 1269.5 + 903.0 0.29 £ 0.24
H.E.R.O. 1027.0 44677.4 £ 1754.4 11709.6 4+ 3233.5 0.24 £ 0.07
Ice Hockey -11.2 25.2 + 5.8 7.5 £ 5.6 0.51 £+ 0.15
James Bond 29.0 27786.9 + 33819.2 327.5 + 123.2 0.01 £ 0.00
Kangaroo 52.0 574.0 + 636.9 378.0 + 344.0 0.62 £+ 0.66
Krull 1598.0 11439.8 + 1218.3 10720.5 4+ 1284.1 0.93 £ 0.13
Kung-Fu Master 258.5 32392.8 £+ 10006.6 288.0 4+ 255.1 0.00 £ 0.01
Montezuma’s Revenge 0.0 393.5 + 50.4 0.0 £ 0.0 0.00 £ 0.00
Ms. Pacman 307.3 6896.1 + 2032.0 1573.1 + 484.0 0.19 £ 0.07
Name This Game 2292.3 22991.2 + 2473.1 7523.3 £+ 2471.4 0.25 £+ 0.12
Phoenix 761.5 424583.2 + 97649.2 2197.9 £+ 1795.4 0.00 £ 0.00
PitFall -229.4 -1.4 + 4.5 -6.7 &+ 19.0 0.98 £+ 0.08
Pong -20.7 21.0 + 0.2 13.7 £ 13.3 0.82 £+ 0.32
Private Eye 24.9 100.0 £ 0.0 44.0 £ 49.6 0.25 £+ 0.66
Q*Bert 163.9 42971.4 + 85070.7 1951.5 4+ 2577.2 0.04 £ 0.06
River Raid 1338.5 14800.9 £ 7924.6 3758.5 + 1536.7 0.18 £ 0.11
Road Runner 11.5 77942.8 + 6088.6 6407.0 £ 4847.4 0.08 £ 0.06
Robotank 2.2 80.5 £+ 13.3 11.3 £ 5.5 0.12 £ 0.07
Seaquest 68.4 2597.3 £+ 386.1 804.0 + 403.3 0.29 £+ 0.16
Skiing -17098.0 -10738.1 £+ 111.1 -16231.5 £+ 6060.5 0.14 £ 0.95
Solaris 1236.3 1353.7 + 517.0 1286.6 + 446.7 0.43 £ 3.81
Space Invaders 148.0 29425.3 + 23623.9 325.4 + 163.4 0.01 £ 0.01
Star Gunner 664.0 360588.6 + 49207.7 4379.0 + 3027.2 0.01 £ 0.01
Surround -10.0 9.4 £ 0.8 2.7 £ 4.7 0.65 + 0.24
Tennis -23.8 11.1 £ 7.6 -13.5 £ 3.8 0.30 £ 0.11
Time Pilot 3568.0 69583.3 + 29838.7 13028.0 4+ 5222.6 0.14 £+ 0.08
Tutankham 11.4 291.2 + 30.4 85.7 £ 61.8 0.27 £ 0.22
Up and Down 533.4 429418.3 4+ 7187.4 17768.7 £ 10322.0 0.04 £ 0.02
Venture 0.0 0.0 £ 0.0 0.0 £ 0.0 N/A
Video Pinball 0.0 441507.9 + 283264.6 11917.4 4+ 8204.3 0.03 £ 0.02
Wizard of Wor 563.5 49333.3 £+ 16157.1 2544.0 £+ 2902.4 0.04 £ 0.06
Yars Revenge 3092.9 270262.9 + 161816.0 12532.7 4+ 8062.8 0.04 £ 0.03
Zaxxon 32.5 73097.2 £+ 14825.8 6902.0 £+ 3206.1 0.09 £+ 0.04
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Figure G.7: Expert normalized episodic return for the JAT agent on the

Atari 57 benchmark.
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Table G.2: Comparison of performance scores across tasks on BabyAl.
The table presents the episodic return (score) achieved by a random agent
(averaged over 1,000 episodes), scores of the expert agent (as averaged from
the dataset), scores of the learned agent, and the expert normalized score

score—random score

calculated as

expert_score—random _score

Task Random agent Expert JAT (raw)  JAT (normalized)
Action Obj Door 0.37 + 0.39 0.99 + 0.01 0.94 £+ 0.14 0.93 £ 0.23
Blocked Unlock Pickup 0.00 £ 0.02 0.95 £ 0.01 0.95 + 0.01 1.00 £ 0.01
Boss Level 0.06 + 0.21 0.94 £ 0.05 0.52 £ 0.43 0.53 + 0.49
Boss Level No Unlock 0.06 £ 0.19 0.94 £0.05 0.48 +0.43 0.48 £ 0.48
Find Obj S5 0.08 £ 0.23 0.95 £ 0.04 0.95 + 0.04 1.01 £ 0.05
Go To 0.13 £ 0.29 0.92 £ 0.07 0.83 £ 0.27 0.89 + 0.34
Go To Door 0.45 + 0.38 0.99 £ 0.00 0.99 + 0.02 0.99 £ 0.04
Go To Imp Unlock 0.07 + 0.22 0.83 £0.13 0.60 + 0.41 0.70 £ 0.54
Go To Local 0.16 £ 0.30 0.93 £ 0.04 0.88 £0.14 0.94 £ 0.19
Go To Obj 0.13 + 0.27 0.93 £ 0.03 0.93 £+ 0.03 1.00 £ 0.04
Go To Obj Door 0.53 + 0.39 0.99 £ 0.01 0.96 + 0.10 0.94 £ 0.21
Go To Red Ball 0.17 £ 0.30 0.93 £ 0.04 0.92 £ 0.05 0.99 £ 0.07
Go To Red Ball Grey 0.12 + 0.27 0.92 £ 0.05 0.91 £+ 0.07 0.99 + 0.08
Go To Red Ball No Dists 0.14 + 0.28 0.93 £0.03 0.93 £ 0.03 1.00 £+ 0.04
Go To Red Blue Ball 0.12 £ 0.27 0.92 £ 0.05 0.88 £ 0.11 0.95 £ 0.14
Go To Seq 0.08 + 0.23 0.94 £ 0.05 0.72 £ 0.34 0.74 + 0.40
Key Corridor 0.00 £+ 0.00 0.91 £0.01 0.86 £ 0.16 0.94 £ 0.18
Mini Boss Level 0.07 £ 0.21 0.89 £ 0.10 0.61 + 0.39 0.65 £ 0.47
Move Two Across S8N9 0.00 £ 0.00 0.96 + 0.01 0.02 £+ 0.13 0.02 + 0.13
One Room S8 0.08 + 0.21 0.92 £0.03 0.92 + 0.04 1.00 £+ 0.04
Open 0.10 £ 0.24 0.95 £ 0.05 0.94 +0.11 0.98 £ 0.13
Open Door 0.23 + 0.34 0.99 £ 0.00 0.99 £ 0.00 1.00 £ 0.01
Open Doors Order N4 0.16 + 0.30 0.99 £0.01 0.95 £ 0.17 0.95 £ 0.20
Open Red Door 0.08 £ 0.21 0.92 £0.03 0.91 + 0.03 1.00 £+ 0.04
Open Two Doors 0.08 £ 0.20 0.98 £ 0.00 0.98 £ 0.00 1.00 £ 0.00
Pickup 0.08 £+ 0.22 0.92 £0.07 0.76 £+ 0.32 0.82 £ 0.38
Pickup Above 0.02 £ 0.09 0.91 £ 0.07 0.90 + 0.08 0.99 £ 0.09
Pickup Dist 0.10 + 0.24 0.86 + 0.21  0.90 £ 0.07 1.05 £ 0.09
Pickup Loc 0.08 + 0.23 0.91 + 0.04 0.86 £+ 0.16 0.94 £ 0.19
Put Next STN4 0.00 £ 0.03 0.96 £ 0.01 0.85 + 0.22 0.88 £ 0.23
Put Next Local 0.00 £+ 0.05 0.92 £ 0.03 0.63 £ 0.36 0.69 + 0.40
Synth 0.11 + 0.26 0.93 £0.06 0.77 £+ 0.33 0.80 £ 0.40
Synth Loc 0.13 £ 0.29 0.94 £0.06 0.79 + 0.33 0.81 £ 0.40
Synth Seq 0.07 £ 0.20 0.95 £ 0.04 0.52 £ 0.44 0.52 = 0.50
Unblock Pickup 0.08 &+ 0.22 0.91 + 0.08 0.74 £+ 0.32 0.79 £ 0.39
Unlock 0.03 £ 0.15 0.87 £ 0.10 0.52 £ 0.42 0.58 £ 0.50
Unlock Local 0.01 £+ 0.09 0.98 £ 0.01 0.98 £ 0.01 1.00 £ 0.01
Unlock Pickup 0.00 £ 0.00 0.75 + 0.04 0.76 £ 0.04 1.01 £ 0.05
Unlock To Unlock 0.00 £ 0.00 0.96 £ 0.00 0.80 + 0.35 0.83 £ 0.37
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Figure G.8: Expert normalized episodic return for the JAT agent on the

BabyAI benchmark.
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Table G.3: Comparison of performance scores across tasks on Meta-World.
The table presents the episodic return (score) achieved by a random agent
(averaged over 1,000 episodes), scores of the expert agent (as averaged from

the dataset), scores of the learned agent, and the expert normalized score
score—randomiscore

calculated as .
expert score—random _score

Task Random agent Expert JAT (raw) JAT (normalized)
Assembly 45.3 + 4.1 246.0 + 3.5 238.0 + 34.6 0.96 + 0.17
Basketball 28 +£1.2 628.0 + 2.0 1.6 £ 0.4 -0.00 £ 0.00
BinPicking 1.9 £ 04 425.6 £+ 101.9 200.0 £+ 222.1 0.47 £ 0.52
Box Close 76.4 + 17.9 512.5 + 107.8 462.6 + 172.0 0.89 + 0.39
Button Press 31.7 £ 5.2 643.1 + 12.8 560.0 4+ 182.6 0.86 £ 0.30
Button Press Topdown 29.0 + 10.4 490.2 + 27.2 266.2 + 77.2 0.51 £ 0.17
Button Press Topdown Wall 29.0 + 10.5 497.2 + 31.4 275.8 + 88.6 0.53 £ 0.19
Button Press Wall 9.0 £ 4.0 675.4 + 15.0 638.3 + 123.0 0.94 £+ 0.18
Coffee Button 31.7+ 6.4 731.1 + 29.3 298.0 4+ 285.6 0.38 £+ 0.41
Coffee Pull 4.1+ 04 259.9 4+ 88.5 41.0 £ 69.8 0.14 £ 0.27
Coffee Push 4.2 +£ 0.8 496.8 + 118.2 153.1 £ 218.9 0.30 £+ 0.44
Dial Turn 29.6 + 16.7 793.6 + 80.1 758.4 + 120.4 0.95 £ 0.16
Disassemble 40.3 £ 7.5 42.8 £ 6.3 40.7 £ 9.9 0.17 £ 3.91
Door Close 53+ 1.3 529.7 + 27.2 524.3 4+ 33.2 0.99 + 0.06
Door Lock 112.3 + 28.6 811.5 + 34.1 696.3 + 198.6 0.84 + 0.28
Door Open 56.4 + 11.2 581.9 + 19.7 577.5 &+ 53.7 0.99 £+ 0.10
Door Unlock 94.2 + 15.6 802.9 + 17.1 768.3 + 91.8 0.95 £+ 0.13
Drawer Close 116.7 £ 253.1 867.9 + 4.5 596.7 4+ 223.4 0.64 £ 0.30
Drawer Open 126.8 £+ 25.2 493.0 + 2.5 485.9 + 36.8 0.98 £ 0.10
Faucet Close 253.1 4+ 22.9 753.9 + 13.4 367.8 + 91.1 0.23 £+ 0.18
Faucet Open 244.1 4+ 23.3 705.8 + 7.1 566.1 + 169.9 0.70 £+ 0.37
Hammer 95.3 + 9.0 693.2 + 34.6 667.7 + 89.4 0.96 £+ 0.15
Hand Insert 2.8 £ 3.5 740.5 + 36.7 688.1 + 187.7 0.93 £ 0.25
Handle Press 80.4 £+ 110.2 855.9 + 72.7 735.0 + 252.0 0.84 £+ 0.32
Handle Press Side 57.0 £+ 39.5 861.1 4+ 20.0 64.5 £ 73.7 0.01 £ 0.09
Handle Pull 10.3 £+ 13.5 669.4 + 24.8 556.6 + 161.7 0.83 £ 0.25
Handle Pull Side 2.1 +£238 384.7 + 102.9 195.1 £+ 187.2 0.50 £+ 0.49
Lever Pull 60.3 + 15.8 612.0 + 38.9 280.9 4+ 234.8 0.40 £+ 0.43
Peg Insert Side 1.7+ 0.4 315.2 4+ 140.1 254.3 4+ 158.4 0.81 £+ 0.51
Peg Unplug Side 4.7 £ 2.8 456.1 £+ 81.7 80.6 + 145.5 0.17 £ 0.32
Pick Out Of Hole 1.5 +£ 0.2 219.6 + 88.9 2.1 £0.1 0.00 £ 0.00
Pick Place 1.6 &+ 1.0 419.1 + 98.2 135.8 £ 200.1 0.32 £+ 0.48
Pick Place Wall 0.0 £ 0.0 450.6 £ 64.1 43.7 £ 129.7 0.10 £ 0.29
Plate Slide 74.6 + 13.8 527.0 + 155.3 481.5 + 190.2 0.90 £+ 0.42
Plate Slide Back 33.5 + 11.2 718.2 + 87.4 196.9 £+ 1.7 0.24 + 0.00
Plate Slide Back Side 34.3 + 11.5 729.6 + 69.1 703.7 &£ 117.3 0.96 £+ 0.17
Plate Slide Side 22.6 + 17.4 662.8 + 102.8 122.6 £+ 24.6 0.16 £+ 0.04
Push 5.5+ 24 750.6 + 44.0 702.4 £+ 157.6 0.94 £ 0.21
Push Back 1.2 &£ 0.2 85.0 + 107.1 82.2 + 108.0 0.97 £ 1.29
Push Wall 6.1 £ 3.2 748.9 + 10.6 158.8 £+ 224.6 0.21 £+ 0.30
Reach 149.7 £+ 44.7 681.4 + 133.7 332.2 + 171.5 0.34 £+ 0.32
Reach Wall 143.3 + 36.6 746.1 4+ 104.2 631.6 + 224.0 0.81 + 0.37
Shelf Place 0.0 £ 0.0 241.3 + 24.6 92.1 + 112.0 0.38 £+ 0.46
Soccer 5.7+ 4.6 375.2 + 140.2 291.6 4+ 161.8 0.77 £ 0.44
Stick Pull 2.6 +£1.4 523.6 + 18.9 480.1 + 119.3 0.92 + 0.23
Stick Push 2.8+ 1.0 627.9 + 10.2 303.2 + 298.8 0.48 £+ 0.48
Sweep 11.2 £ 7.3 494.8 + 43.3 16.7 £ 18.7 0.01 £+ 0.04
Sweep Into 12.5 4+ 10.7 799.2 + 19.1 793.3 + 47.5 0.99 + 0.06
Window Close 575+ 7.1 591.3 + 38.6 414.3 + 207.4 0.67 £ 0.39
Window Open 43.4 £ 2.1 590.8 + 57.1 577.3 &+ 63.9 0.98 £+ 0.12
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Figure G.9: Expert normalized episodic return for the JAT agent on the

Meta-World benchmark.
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Table G.4: Comparison of performance scores across tasks on MuJoCo.

The table presents the episodic return (score) achieved by a random agent
(averaged over 1,000 episodes), scores of the expert agent (as averaged from

the dataset), scores of the learned agent, and the expert normalized score
scorefrandomiscore
expert_score—random _score

calculated as

Task Random agent Expert JAT (raw) JAT (normalized)
Ant -59.9 £+ 99.6 5846.4 + 942.6 5110.5 &+ 1720.8 0.88 + 0.29
Inverted Double Pendulum 57.5 £ 17.5 9338.7 £ 352.6 8663.7 + 1259.4 0.93 + 0.14
Half Cheetah -285.0 £ 79.8 7437.8 £ 173.3 6595.9 + 244.4 0.89 £+ 0.03
Hopper 184 £ 17.1 1858.7 £ 534.1 1409.0 £ 385.6 0.76 + 0.21
Humanoid 122.0 &+ 35.3 6281.0 4+ 1795.8 712.6 + 120.6 0.10 &+ 0.02
Inverted Pendulum 6.1 £ 3.5 475.4 £ 179.0 117.4 + 22.0 0.24 £ 0.05
Pusher -149.7 £ 74 -25.2 £ 6.7 -25.0 £ 6.3 1.00 £ 0.05
Reacher -43.0 £ 3.9 -5.7£25 -5.9 £ 24 0.99 £ 0.06
Humanoid Standup 33135.8 + 2481.9  273574.2 £ 85253.3  116736.7 £+ 22765.5 0.35 £+ 0.09
Swimmer 0.8 + 10.7 92.2 + 4.4 94.0 £ 4.1 1.02 £ 0.04
Walker 2d 2.7+£6.1 4631.2 £ 1059.0 4381.3 + 851.1 0.95 + 0.18
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Figure G.10: Expert normalized episodic return for the JAT agent on the
MuJoCo benchmark.
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G.7 JAT dataset in depth

G.7.1 Sequential decision-making datasets

For each decision-making environment, we collect a set of interactions using expert
agents. Detailed scores are available in the Appendix G.6.

Atari — We use the 57 games from the Arcade Learning Environment (Bellemare
et al., 2013) as a benchmark in our research, amassing roughly 500,000 interactions per
game. Episode lengths varied significantly depending on the specific game. For each game,
we trained a dedicated agent for 2 billion steps using the asynchronous implementation of
Proximal Policy Optimization (Schulman et al., 2017) from Sample Factory (Petrenko
et al., 2020). The expert agents achieve above human performance on 43 tasks®.

BabyAI — BabyAl stands out in our study due to its unique characteristic of being
partially observable and its dual-modality observations (Chevalier-Boisvert et al., 2019,
2023). Using the bot provided with the BabyAI paper (Chevalier-Boisvert et al., 2019),
we gathered 100,000 episodes for 39 of its available settings. Each interaction consists of
a text observation (mission), a discrete observation (7 x 7 symbolic representation of the
agent’s field of view), an action, and a reward.

Meta-World — Meta-World’s MT50 benchmark provides a set of 50 diverse and
challenging robot manipulation tasks (Yu et al., 2020). Similar to the methodology used
for Atari, we trained one agent per task using the asynchronous PPO (Schulman et al.,
2017) implementation of (Petrenko et al., 2020). The trained agents solved most of the
tasks, except for Assembly and Disassemble, where they failed to reach the expected
performance. We limit the number of timesteps per episode to 100, which proved to
be sufficient for solving the tasks. Without this limit, much of the subsequent dataset
would consist of the stabilization phases of the agents after goal attainment, reducing its

relevance. We then used the trained agents to generate 10,000 episodes per environment.

MuJoCo — We included the MuJoCo locomotion benchmark suite (Todorov et al.,
2012; Brockman et al., 2016) comprising 11 continuous control tasks into our study due
to its diverse challenges in domain complexity and task difficulty, and its wide recognition
in the research literature. Following our methodologies for Atari and Meta-World, we
individually trained agents for each task using asynchronous PPO (Schulman et al., 2017)
from Sample Factory (Petrenko et al., 2020). These agents successfully solved all tasks,
achieving scores that meet or exceed the current highest standards. Subsequently, we
employed these agents to generate 10,000 episodes per environment.

Each sample in this dataset is an episode. This episode consists of a list of observations,
actions, and rewards, the nature and size of which depend on the task. In Figure G.11, we
represent for each Atari game the average return of the episodes of the dataset normalized

3The expert score is below the human score for Asterix, Bowling, Centipede, Fishing Derby, Kangaroo,
Montezuma’s Revenge, Ms. Pacman, Pitfall, Private Eye, River Raid, Seaquest, Skiing, Solaris, Venture
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by the human score from (Mnih et al., 2015). Notably, for 43 games the average score
is higher than the human score, and for 31 games the average score is more than twice
the human score. It should be noted, however, that for 7 games (Bowling, Montezuma’s
Revenge, PitFall, Private Eye, Seaquest, Solaris and Venture) the average score is less
than 10% of the human score.

We also plot the distribution of returns for each task, which provides a more detailed
picture than a simple average. Figure G.12 shows this distribution for Atari, Figure G.13
for BabyAlI, Figure G.14 for Meta-World, and Figure G.15 for MuJoCo.
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Figure G.11: Human normalized dataset scores for Atari.
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Figure G.12: Atari dataset return distribution.
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Text-Centric Datasets

Oscar — Common Crawl-based text documents have been widely used in the past to
create datasets for Language Modeling (Radford et al., 2019; Brown et al., 2020; Raffel
et al., 2020). We chose to leverage the unshuffled deduplicated English subset of the
OSCAR! corpus (Ortiz Sudrez et al., 2020) for our language modeling objective. As such
crawled internet data needs to be cleaned before using it for training Language Models
(e.g., deduplication, filtering out machine-generating content), we reused both the cleaning
and deduplication pipeline from the ROOTS corpus (Laurencon et al., 2022). The initial
dataset was shuffled, split into a training (95%) and test (5%) set, and evenly split into
30 shards on which the cleaning and deduplication pipelines were applied to reduce the
memory needs. Shards were then concatenated back together, leading to a final dataset
of 245 million documents (compared to 304 million documents in the initial dataset).

Conceptual-Captions — We include the Conceptual-Captions dataset (Sharma et al.,
2018), as it is a key resource for image captioning and visual understanding tasks. It
contains over 2.6 million training examples and over 12,000 test examples, with a wide
range of web-sourced images, each paired with a descriptive caption.

OK-VQA - We include the OK-VQA dataset (Marino et al., 2019) because it is an
essential resource for visual question answering tasks that focus on the intersection of
visual perception and knowledge-based reasoning. With over 14,000 samples, it contains
a wide range of images, each associated with questions that require not only visual
understanding, but also external knowledge for an accurate answer.

Wikipedia — The Wikipedia dataset, built from the Wikipedia dump®, contains
over 6 million English language samples as of March 1, 2022. It offers a wide range
of topics and a wealth of information. By using this dataset, we aim to improve the
language processing capabilities of our model and provide access to extensive reservoir of
encyclopedic knowledge.

“Its original version from 2019: https://huggingface.co/datasets/oscar
Shttps://dumps.wikimedia.org/


https://huggingface.co/datasets/oscar
https://dumps.wikimedia.org/
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G.8 Image captioning additional examples

tattoo on the left inner - shaped cloud formation over and illustration of the new
forearm. ~ artist. ~ ~ photo a city. ~ photo by person. year. photo by person.
sharing website #zn. - #2n.0 # christmas

s and drawings on the ceiling - cut emerald - cut diamonds day in the green forest.
of a building. are a perfect addition to any
home.

for the first time! by person, s are part of the annual event. ging it up : the model was
the man who is now on the organisation spotted wearing a pair of black
right. jeans, a white t - shirt and

black t - shirt

s and other souvenirs at the s of the day : flowers dog in a bedroom.
market.

Figure G.16: JAT image captioning additional examples.
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G.9 Reward as a task determinant

In multi-task learning, different environments may share identical dynamics and
observational structures while differing in their ultimate goals (i.e., reward functions).
Initially, the agent cannot distinguish the specific task it is facing. In most cases, this
problem does not arise. For BabyAl, for example, the goal is an explicit part of the
observation. For Atari, a single frame is sufficient to determine the game, and therefore
the goal. In our dataset, the only domain that could be challenging in this respect is
Meta-World, for which the structure of observations and dynamics is consistent across
tasks. Note also that even in this case, it should be possible for the agent in some instances
to infer the task from the initial conditions. We confirm this hypothesis in the following
experiment.

To solve the problem of task indeterminacy, Gato introduces a method of pre-empting
the sequence with an expert demonstration (prompt) to guide the agent. While this
approach is effective, it imposes an important limitation: a demonstration must be
available, and this demonstration must be sufficiently complete to clearly define the task.
In the JAT model, we adopt a less restrictive and simpler approach by incorporating the
reward signal directly into the observation encoding. We believe that this integration can,
in most cases, provide the agent with sufficient context to remove ambiguity about the
task at hand.

To support our hypothesis on the effectiveness of integrating reward signals into
observations, we conducted an experiment with three different settings. First, to create
a baseline where task indeterminacy is absent, we trained individual agents, each on a
specific task from a random subset of 10 Meta-World tasks. This single-task training
ensures that each agent is perfectly matched to its respective task, without any ambiguity.
Next, we introduced a degree of indeterminacy by training a single model on the same 10
tasks without access to the reward signal, presenting a scenario that simulates a worst-case
uncertainty condition. We compare these two settings with our full JAT model, i.e., with
access to the reward signal, trained on the same selection of tasks. We compared the
performance of these three scenarios, with the results detailed in Figures G.17 following
the recommendations of (Agarwal et al., 2021).

Median QM Mean . .
JAT w/o rewards vi I 1 i Single-task JAT i JAT
JAT ! ! ! JAT i JAT w/o reward
Single-task JAT _ L | " ! L 0.95 0.50 0.75
0.8 1.0 0.8 1.0 0.8 1.0
Expert normalized episodic return P(LEFT > RIGHT)
(a) Aggregated metrics. (b) Probability of improvement.

Figure G.17: Results of the reward ablation. The vertical bars are the
estimated values and the shaded areas are the 95% stratified bootstrap CIs.
The experiments were conducted on a selection of 10 tasks from the Meta-
World benchmark. Displayed are the results of an ablation study on our JAT
model variations: Single-task JAT with each task learned by a dedicated
agent; JAT without rewards where the training omits reward signals; and
the full JAT model integrating reward signals. Results are based on 100
evaluations per task.
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Firstly, it’s notable that the JAT model trained on a single task surpasses other
settings, thus demonstrating the existence of a negative impact of task indeterminacy.
However, this impact is actually very minor, and even in the most unfavorable setting
(JAT without reward), the normalized IQM score reaches 97.6 + 0.7%. This confirms the
previously formulated intuition that the task can generally be inferred from the initial
conditions. Then, when comparing the JAT model with and without access to the reward,
we observe a probability of improvement from the former over the latter of 51.8 + 2.5%,
indicating that the addition of the reward has a significant, albeit small, positive effect
on resolving indeterminacy. Lastly, the most significant gap is observed in the average
score. This can be attributed to the fact that this metric accounts for outliers. Here,
the outliers are the tasks suffering from indeterminacy, for which the agent often fails to
resolve the task.

In summary, the key insight from this study is that complex solutions like prompting
are often not required to address this task indetermination issue, as it typically presents
a minimal challenge. Furthermore, in instances where the problem does manifest, imple-
menting a straightforward strategy like incorporating the reward into the observation
proves to be an effective measure for mitigation.
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Introduction

H.1 Introduction

Inspired by how structured and gradual human learning is, curriculum learning has
long been identified as a key component for many machine learning problems (Selfridge
et al., 1985; Elman, 1993; Bengio et al., 2009; Cangelosi & Schlesinger, 2015) in order to
organize samples shown during learning. While such a curriculum can be hand-designed
by human experts on the problem, the field of automatic curriculum learning (ACL)
(Graves et al., 2017; Portelas et al., 2020b) focuses on designing teacher algorithms able to
autonomously sequence learning problem selection so as to maximize agent performance
(e.g., over a set of samples in supervised learning, or game levels in Deep RL).
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individual Atari games (Mnih et al., 2015)
or navigation in fixed scenarios (Lillicrap
et al., 2016; Haarnoja et al., 2018). Many
works proposed novel Deep RL learning ar-

Episodic reward

ACL teachers

ADR /

ALP-GMM

Action

Embodiments

GoalGAN ':r
v T

Continuous
task vector

chitectures able to successfully infer multi-

Step

Observation
& reward

Procedural

|

purpose action policies when given an ex-

perience stream composed of randomly
sampled tasks (Schaul et al., 2015; Hes-
sel et al., 2018; Cobbe et al., 2019; Hessel
et al., 2019). Here and thereafter tasks
denote learning problems in general, for in-

Environments

K Parkour Stump Tracks / /

stance, multiple mazes to solve (a.k.a envi- — Random
ACL method 1

ronments) or, in the context of robotic ma- ACL method 2

nipulation, multiple state configurations to

obtain (i.e., goals) (Portelas et al., 2020b).
To compare existing and future multi-task
Deep RL agents, Cobbe et al. (2020) pro-
posed a suite of 16 atari-like environments,
all relying on procedural content genera-
tion (PCG) to generate a wide diversity

©

Global performance assessment Skill-specific performance

Figure H.1: TeachMyAgent: A benchmark to
study and compare teacher algorithms in contin-
uous procedural environments.

of learning situations. The high-diversity

induced by PCG has been identified as par-

ticularly beneficial to foster generalization abilities in Deep RL agents (Justesen et al.,
2018; Risi & Togelius, 2020; OpenAl et al., 2019).

An important aspect not covered by these prior works is that they all rely on proposing
randomly selected tasks to their agent, i.e., they do not consider using a curriculum
in learning. One can argue that random task selection is inefficient, especially when
considering complex continuous task spaces, which can feature subspaces of varying
difficulties ranging from trivial to unfeasible. Following this observation, many works
attempted to train multi-task agents by pairing them with ACL algorithms (Portelas
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et al., 2020b; Narvekar et al., 2020). The advantages of ACL over random task sampling
for Deep RL agents have been demonstrated in diverse experimental setups, such as
domain randomization for sim2real robotics (OpenAl et al., 2019; Mehta et al., 2020),
video games (Salimans & Chen, 2018), or navigation in virtual environments (Florensa
et al., 2018; Portelas et al., 2020a; Racaniere et al., 2020).

While this diversity of potential application domains and implementations of ACL
hints at a promising future for this field, it also makes comparative analysis complicated,
which limits large-scale adoption of ACL. For instance, depending on the ACL approach,
the amount of required expert knowledge on the task space can range from close to none
— as in Portelas et al. (2020a) — to a high amount of prior knowledge, e.g., initial task
sampling subspace and predefined reward range triggering task sampling distribution
shifts, as in OpenAl et al. (2019). Additionally, some ACL approaches were tested based
on their ability to master an expert-chosen target subspace (Klink et al., 2020) while
others were tasked to optimize their performance over the entire task space (Baranes
& Oudeyer, 2009; Florensa et al., 2018; Portelas et al., 2020a). Besides, because of the
considerable computational cost and implementation efforts necessary for exhaustive
comparisons, newly proposed ACL algorithms are often compared to only a subset of
previous ACL approaches Mehta et al. (2020); Portelas et al. (2020a); Racaniere et al.
(2020). This computation bottleneck is also what prevents most works from testing their
ACL teachers on a diversity of Deep RL students, i.e., given a set of tasks, they do
not vary the student’s learning mechanism nor the characteristics that may influence
its learning dynamics (e.g., its embodiment). Designing a unified benchmark platform,
where baselines would be shared allowing one to only run their approach and compare it
to established results, could drive progress in this space.

Inspired by how the MNIST dataset (Deng, 2012), or the ALE Atari games suite
(Bellemare et al., 2013), respectively catalyzed supervised learning and single-task RL
research, we propose to perform this much-needed in-depth ACL benchmarking study.
As such, we introduce TeachMyAgent 1.0", a teacher testbed featuring a) two procedural
Box2D? environments with challenging task spaces, b) a collection of pre-defined agent
embodiments, and ¢) multiple Deep RL student models. The combination of these
three components constitutes a large panel of diverse teaching problems. We leverage
this benchmark to characterize the efficiency of an ACL algorithm on the following key
teaching challenges:

1. Mostly unfeasible task spaces - While using PCG systems to generate tasks allows
proposing rich task spaces to Deep RL agents, which is good for generalization,
such large spaces might contain a predominant amount of unfeasible (or initially
unfeasible) tasks. A teacher algorithm must then have the ability to quickly detect
and exploit promising task subspaces for its learner.

2. Mostly trivial task spaces - On the contrary, the task space might be mostly trivial
and contain only few challenging subspaces, which is a typical scenario when dealing
with a skilled student (e.g., that is already trained, or that has an advantageous

"http://developmentalsystems.org/TeachMyAgent/
29D game engine, used in OpenAlI gym (Brockman et al., 2016)
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embodiment). In that case, the teacher has to efficiently detect and exploit the
small portion of subspaces of relevant difficulty.

3. Forgetting students - Deep RL learners are prone to catastrophic forgetting Kirk-
patrick et al. (2017), i.e., to overwrite important skills while training new ones. This
has to be detected and dealt with by the teacher for optimal curriculum generation.

4. Robustness to diverse students - Being able to adapt curriculum generation to
diverse students is an important desideratum to ensure a given ACL mechanism
has good chances to transfer to novel scenarios.

5. Rugged difficulty landscapes - Another important property for ACL algorithms is to
be able to deal with task spaces for which the optimal curriculum is not a smooth
task distribution sampling drift across the space but rather a series of distribution
jumps, e.g., as in complex PCG-task spaces.

6. Working with no or little expert knowledge - Prior knowledge over a task space
w.r.t. a given student is a costly information gathering process that needs to be
repeated for each new problem/student. Relying on as little expert knowledge as
possible is therefore a desirable property for ACL algorithms (especially if aiming
for out-of-the-lab applications).

To precisely assess the proficiency of an ACL algorithm on each of these challenges
independently, we extend a Box2D walker environment from Portelas et al. (2020a)
into multiple unit-test variants, one per challenge, inspired by the structure of bsuite
(Osband et al., 2020), a recent benchmark for RL agents. The second environment of our
benchmark is the Parkour environment, inspired by Wang et al. (2020). It features a
complex task space whose parameters seed a neural network-based procedural generation
of a wide diversity of environments, in which there exists drastically different learning
curricula depending on the agent’s embodiment (see fig. H.1). To assess the ability
of existing ACL methods to robustly adapt to diverse students, we consider a random
black-box student scenario in the Parkour environment, i.e., the morphology (e.g., walker
or climber) of the learner is randomly selected for each new training run.

Scope — More precisely, we conduct an in-depth comparative study of ACL approaches
suited for generalist Deep RL agents in single-agent scenarios. We do not include works
on self-play /multi-agent setups Hernandez et al. (2019); Hernandez-Leal et al. (2018) nor
single-agent population-based approaches (Forestier et al., 2022; Wang et al., 2020). Also,
we are interested in the problem of task selection from a continuous parameter space
encoding the procedural generation of tasks. We do not consider ACL methods for discrete
task sets Matiisen et al. (2017), sets of task spaces Forestier et al. (2022); Colas et al.
(2019), or intrinsic reward learning (Pathak et al., 2019; Burda et al., 2019b). We assume
this continuous space is given and relatively low-dimensional, as it already poses strong
teaching challenges: we therefore leave the analysis of approaches that autonomously
learn task representations for subsequent work Pong et al. (2020); Jabri et al. (2019);
Kovag et al. (2023).

Our main contributions are:

e Identification of multiple challenges to be tackled by ACL methods, enabling multi-
dimensional comparisons of these algorithms.

263



264

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL

e TeachMyAgent 1.0, a set of teaching problems (based on PCG environments) to
study and compare ACL algorithms when paired with Deep RL students.

e Comparative study of representative existing ACL approaches, including both
skill-specific unit-tests and global performance assessments, which highlights the
competitiveness of methods not using expert knowledge and shows that our Parkour
environment largely remains an open problem for current state-of-the-art ACL.

e Release of an open-source Python package, featuring 1) all environments, embodi-
ments and Deep RL students from TeachMyAgent, 2) all studied ACL algorithms,
that we either adapt to our API when code is available or re-implement from scratch
if not open-sourced, 3) our experimental results as baselines for future works, and
4) tutorials & reproducibility scripts.

H.2 Related work

Many environment suites already exist to benchmark Deep RL algorithms: some of
them leverage video games, which provide challenging discrete action spaces, e.g., Atari
2600 Games as in Bellemare et al. (2013) or Sonic The Hedgehog levels in Nichol et al.
(2018). To study and develop Deep RL agents suited for complex continuous control
scenarios, the community predominantly used the MuJoCo physics engine (Todorov et al.,
2012). The Deep Mind Lab (Beattie et al., 2016) provides customizable puzzle-solving
environment, particularly well suited to study goal-conditioned policies learning from
pixels in rich 3D environments. At the intersection of Deep RL and Natural Language
Processing, benchmark environments such as TextWorld (Coté et al., 2019) or BabyAl
(Chevalier-Boisvert et al., 2019) were also designed to provide a testbed to develop an
autonomous agent receiving linguistic goals and/or interacting using language. The bsuite
benchmark (Osband et al., 2020) leverages unit-tests to assess the core capabilities of Deep
RL methods (e.g., generalization, memory). In all these previous works, the Deep RL agent
is learning in one or a few environments presented randomly and/or intrinsically chooses
goals within those predefined environments, and the long-term community objective is to
find more efficient learning architectures. On the contrary, the objective of TeachMyAgent
is to foster the development of new teacher algorithms whose objective is, given a task
space and a Deep RL student, to most efficiently organize the learning curriculum of
their Deep RL student such that its performance is maximized over the task set. In other
words, it is not about finding efficient learning architectures but about finding efficient
curriculum generators.

Perhaps closest to our work is the Procgen benchmark (Cobbe et al., 2020), which
features several Atari-like environments, all having unique procedural generation systems,
allowing for the generation of a wide diversity of learning situations, particularly well
suited to assess the generalization abilities of Deep RL agents. While they rely on an
uncontrolled, random procedural generation, we assume control over it, which enables the
use of ACL methods to select parameters encoding task generation. An interesting future
work, parallel to ours, would be to modify the Procgen benchmark to allow direct control
over the procedural generation.

Because of the current lack of any ACL benchmark, most recently proposed ACL
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algorithms have relied on designing their own set of test environments. Florensa et al.
(2018) used a custom MuJoCo Ant maze in which the ACL approach is in control
of which end-position to target. Klink et al. (2020) used another MuJoCo Ant maze
and ball-catching environment featuring a simulated Barrett WAM robot. While these
previous works studied how to control goal selection in a given fixed environment, we
are interested in the arguably more challenging problem of controlling a rich parametric
procedural generation. Portelas et al. (2020a) already studied ACL in Stump Tracks, a
procedural Box2D environment that we include and extend in TeachMyAgent, however,
it did not perform an extensive comparative study as what we propose in the present
work. Racaniere et al. (2020) also used procedural generation to test their ACL approach,
however they only compared their ACL algorithm to Goal-GAN (Florensa et al., 2018),
and did not open-source their environments. Additionally, in contrast with all previously
cited ACL works, in TeachMyAgent we propose an in-depth analysis of each approach
through multiple unit-test experiments to fully characterize each teacher.

H.3 ACL baselines

In the following paragraphs, we succinctly frame and present all the ACL algorithms
that we compare using TeachMyAgent. More detailed explanations are left to Section
H.8.

Framework — Given a Deep RL student s and an n-dimensional task-encoding
parameter space T € R™ (i.e., a task space), the process of automatic curriculum learning
aims to learn a function A : H — D(7) mapping any information retained about past
interactions with the task space to a distribution of tasks.

One can define the optimization objective of an ACL policy given an experimental
budget of E episodic tasks as:

max/ PFdT, (H.1)
A TN'Dtarget

with Dygrge the distribution of test tasks over the task space and P the post-training
performance (e.g., episodic reward, exploration score) of a student s on task T after
FE episodes. Since it is usually difficult to directly optimize for this objective, various
surrogate objectives have been proposed in the literature. See Portelas et al. (2020b) for
a review and classification of recent ACL works.

Ezxpert-knowledge — To ease the curriculum generation process, multiple forms
of expert knowledge have been provided in current ACL approaches. We propose to
gather them in three categories: 1) use of initial task distribution D;,;; to bootstrap the
ACL process, 2) use of a target task distribution Dy4,4er to guide learning, and 3) use of
a function interpreting the scalar episodic reward sent by the environment to identify
mastered tasks (Reward mastery range). For each implemented ACL method, we highlight
its required prior knowledge over the task space w.r.t a given Deep RL agent in table
H.1. We hope that this classification will ease the process of selecting an ACL method
for researchers and engineers, as available expert knowledge is (arguably) often what
conditions algorithmic choices in machine learning scenarios.
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Table H.1: Expert knowledge used by the different ACL methods. We
separate knowledge required (REQ.) by algorithms, optional ones (OPT.),
and knowledge not needed (empty cell).

Algorithm
ADR req. req.
ALP-GMM | opt.
Covar-GMM | opt.

Dinit Dtarget Reward mastery range

Goal-GAN | opt. req.
RIAC

SPDL req. req.

Setter-Solver opt. req.

Implemented baselines — We compare seven ACL methods, chosen to be representa-
tive of the diversity of existing approaches, that can be separated in three broad categories.
First, we include three methods relying on the idea of maximizing the Learning Progress
(LP) of the student: RIAC (Baranes & Oudeyer, 2009), Covar-GMM (Moulin-Frier &
Oudeyer, 2013) and ALP-GMM (Portelas et al., 2020a). We then add in our benchmark
Goal-GAN (Florensa et al., 2018) and Setter-Solver (Racaniere et al., 2020), both gener-
ating tasks using deep neural networks and requiring a binary reward for mastered /not
mastered tasks, pre-defined using expert knowledge. Finally, we append to our comparison
two ACL algorithms using the idea of starting from an initial distribution of tasks and
progressively shifting it regarding the student’s capabilities: ADR (OpenAl et al., 2019)
(inflating a task distribution from a single initial task based on student mastery at each
task distribution’s border) and SPDL (Klink et al., 2020) (shifting its initial distribution
towards a target distribution). We also add a baseline teacher selecting tasks uniformly
random over the task space (called Random).

H.4 The TeachMyAgent benchmark

In the following section, we describe available environments and learners in Teach-
MyAgent. We propose two Box2D environments with procedural generation allowing to
generate a wide variety of terrains. Both our environments are episodic, use continuous
action/observation spaces and return scalar rewards. In addition, we provide two Deep
RL algorithms as well as multiple agent morphologies. An experiment is thus constituted
of an ACL method, an environment and a learner (i.e., an embodied Deep RL algorithm).

H.4.1 Environments

Stump Tracks environment — Stump Tracks is an extension of a parametric Box2D
environment initially presented in Portelas et al. (2020a). The learning policy is embodied
into a walker agent whose motors are controllable with torque (i.e., continuous action
space). The observation space is composed of lidar sensors, head position and joint
positions. The walker is rewarded for going forward and penalized for torque usage.
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An episode lasts 2000 steps at most, and is terminated if the agent reaches the end of
the track or if its head collides with the environment (in which case a —100 reward is
received). A 2D parametric PCG is used for each new episode: it controls the height
and spacing of stumps laid out along the track (see fig. H.2 and app. H.9). We chose to
feature this environment as its low-dimensional task space is convenient for visualizations
and modifications. We derive multiple variants of Stump Tracks (e.g., by extending the
task space boundaries or shuffling it) to design our unit-tests of ACL challenges (see sec.
H.1 and sec. H.5).

2D PCG-encoding
task space
[stump spacing, stump height]

Figure H.2: Stump Tracks, a simple parametric env. to study ACL algorithms
with Deep RL students.

Parkour environment — Inspired by both Stump Tracks and another Box2D
environment from Wang et al. (2020), we present the parametric Parkour environment: a
challenging task space with rugged difficulty landscape, few prior knowledge definable, and
requiring drastically different learning curricula depending on the agent’s embodiment.

It features an uneven terrain (see figure H.1) composed of a ground and ceiling encoded
through a Compositional Pattern-Producing Network (CPPN) (Stanley, 2007). This
CPPN, whose weights and architecture are kept fixed, takes an additional input vector
of bounded real numbers, which acts as the parameters controlling terrain generation.
This neural network-based generation enables the creation of a task space with a rugged
difficulty landscape (see Section H.9), requiring time-consuming exploration from an
expert to seek trivial subspaces. We propose three versions of this task space (i.e., three
possible bounds for the CPPN’s input vector): easy, medium (used in the experiments of
this work), and hard. The Parkour environment also features graspable objects, called
"creepers", creating a niche for climbing morphologies. Similarly to the stumps in Stump
Tracks, the creepers’ generation is controlled by their height and the space between them.
The Parkour’s task space also contains a dimension controlling the "water" level of the
track, ranging from 0 (no water) to 1 (entire parkour under water). Water adds new
physic rules aiming to imitate (in a simplified way) physics of water.

The resulting 6D task space (3 for the CPPN’s input, 2 for creepers and 1 for water)
creates a rich environment in which the optimal curriculum will largely depend on the
agent’s embodiment (e.g., swimming agents need high levels of water, while climbers and
walkers need low levels). Note that, as in Stump Tracks, each episode lasts 2000 steps,
agents are rewarded for moving forward (and penalised for using torque) and have access
to lidars, head position, joint positions, and also additional information (see Section H.9).
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H.4.2 Learners

Embodiments — As aforementioned, we introduce new morphologies using swimming
and climbing locomotion (e.g., fish, chimpanzee, see figure H.1). TeachMyAgent also
features the short walker and quadrupedal walker from Portelas et al. (2020a) as well as
new walking morphologies such as the spider and the millipede (see figure H.1).

Deep RL algorithms — To benchmark ACL algorithms, we rely on two different
state-of-the-art Deep RL algorithms: 1) Soft-Actor-Critic (Haarnoja et al., 2018) (SAC),
a now classical off-policy actor-critic algorithm based on the dual optimization of reward
and action entropy, and 2) Proximal Policy Optimization (PPO) (Schulman et al., 2017),
a well-known on-policy Deep RL algorithm based on approximate trust-region gradient
updates. We use OpenAl Spinningup’s implementation® for SAC and OpenAl Baselines’
implementation* for PPO. See Section H.10 for implementation details.

H.5 Experiments

We now leverage TeachMyAgent to conduct an in-depth comparative study of the
ACL algorithms presented in Section H.3. After discussing experimental details, we
undergo two separate experiments, aiming to answer the following questions:

e How do current ACL methods compare on each teaching challenges proposed in sec.
H.17?

e How do current ACL methods scale to a complex task space with limited expert
knowledge 7

H.5.1 Experimental details

For both our environments, we train our Deep RL students for 20 million steps. For
each new episode, the teacher samples a new parameter vector used for the procedural
generation of the environment. The teacher then receives the cumulative episodic reward
that can be potentially turned into a binary reward signal using expert knowledge (as
in GoalGAN and Setter-Solver). Additionally, SPDL receives the initial state of the
episode as well as the reward obtained at each step, as it is designed for non-episodic RL
setup. Every 500000 steps, we test our student on a test set composed of 100 pre-defined
tasks and monitor the percentage of test tasks on which the agent obtained an episodic
reward greater than 230 (i.e., "mastered" tasks), which corresponds to agents that were
able to reach the last portion of the map (in both Stump Tracks and Parkour). We
compare performance results using Welch’s t-test as proposed in Colas et al. (2018),
allowing us to track statistically significant differences between two methods. We perform
a hyperparameter search for all ACL conditions through grid-search (see Section H.8),

*https://spinningup.openai.com
‘https://github.com/openai/baselines
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while controlling that an equivalent number of configurations are tested for each algorithm.

See Section H.10 for additional experimental details.

H.5.2 Challenge-specific comparison with Stump Tracks

First, we aim to compare the different ACL methods on each of the six challenges we
identified and listed in Section H.1. For this, we propose to leverage the Stump Tracks
environment to create five experiments, each of them designed to highlight the ability of
a teacher in one the first five ACL challenges (see Section H.10 for details):

o Mostly unfeasible task space: growing the possible maximum height of stumps,
leading to almost 80% of unfeasible tasks.

o Mostly trivial task space: allowing to sample stumps with negative height introducing
50% of new trivial tasks.

e Forgetting student: resetting the Deep RL model twice throughout learning (i.e.,
every 7 million steps).

e Diverse students: using multiple embodiments (short bipedal and spider) and Deep
RL students (SAC and PPO).

e Rugged difficulty landscape: Applying a random transformation to the task space

such that feasible tasks are scattered across the space (i.e., among unfeasible ones).

Additionally, in order to compare methods on the last challenge (i.e., the need of prior
knowledge), we propose to perform each of our five experiments in three conditions:

e No expert knowledge: None of the prior knowledge listed in table H.1 is given. Hence
only methods not requiring it can run in this setup.

o Low expert knowledge: Only reward mastery range information is accessible. We
consider this as low prior knowledge as, while it requires some global knowledge
about the task space, it does not require assumptions on the difficulty of specific
subspaces of the task space.

o High expert knowledge: All the expert knowledge listed in table H.1 is given.

Note that in the No expert knowledge and Low expert knowledge setups, SPDL (and
ADR in Low expert knowledge) uses an initial task distribution randomly chosen as a
subset of the task space. Moreover, in order to make a fair comparison in the High expert
knowledge condition, we modified the vanilla version of Covar-GMM and ALP-GMM such

that they can use an expert-given initial task distribution.

Using these 15 experiments (5 challenges in 3 expert knowledge setups), we here
introduce what is, to our knowledge, the first unit-test like experiment of ACL methods,
allowing one to compare teachers in each of the challenges we previously introduced.
Moreover, performing each of the five experiments in three expert knowledge setups
allows to show how the (un)availability of expert knowledge impacts performance for
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each method, which is hard to infer from each approach’s original paper as they tend to
focus only on the most ideal scenario. See Section H.10 for a detailed explanation of each
experimental setup.

To conduct our analysis, each ACL method is used in 15 experiments with 32 seeds,
except ADR, Goal GAN and Setter-Solver which cannot run in the No expert knowledge
setup (i.e., only 10 experiments). We then calculate the aforementioned percentage of
mastered test tasks on our test set (identical for all experiments), and average it over
seeds. Performance results of all conditions can be visualized in figure H.3 as a ratio of
the Random teachers’ performance, our lower-baseline.
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Figure H.3: EK: Expert Knowledge. Post-training performance of each ACL
method as a ratio of Random’s results on multiple teaching challenges, done
with 3 different expert knowledge levels. We use # to show estimations of
upper-bound performances in each challenge, except for Variety of students
(see Section H.11.1). On each axis, we indicate which method performed
significantly better than Random (p < 0.05) using colored stars matching
each method’s color (e.g., * for Covar-GMM, * for ADR). See Section H.11.2
for details.

Results — We gather the results in figure H.3 as well as in Section H.11.2.

Ezpert-knowledge-free methods — Using these, one can see, first, that methods not
requiring any expert knowledge (e.g., ALP-GMM or Covar-GMM) obtain very similar
performances in No ezpert knowledge and in High expert knowledge setups (although
expert knowledge does benefit them in terms of sample efficiency, see Section H.11.2 for
details). Comparing their performance without prior knowledge to the results obtained
by other teachers when they have access to high expert knowledge shows how competitive

expert-knowledge-free methods can be.
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Ezxpert knowledge dependency — The Low expert knowledge setup highlights the
dependence of methods relying on an initial distribution of easy tasks (e.g., ADR and
GoalGAN), as it is not given in this scenario. As a result, in this setup, ADR obtains end
performances not significantly different from Random in all challenges, and GoalGAN
only outperforms Random in the mostly trivial task space (p < 0.05). This has to be
compared with their performance on the High expert knowledge setup, in which both
approaches reach the top 3 results on 3/5 challenges.

ADR & GoalGAN — Both ADR and GoalGAN have one strong weakness in a
challenge (Rugged difficulty for ADR and Forgetting student for GoalGAN) that lead
them to a performance worse than Random (significantly for ADR with p < 0.05) in all
expert knowledge setups. For ADR, it can be explained by the fact that its expansion
can get stuck by subspaces of very hard (or unfeasible) difficulty, and for Goal GAN, by
its inability to adapt quickly enough to the student’s regressing capabilities because of its

inertia to update its sampling distribution (updating the buffer and training the GAN).

We provide a more in-depth analysis of these two cases in Section H.11.2.

SPDL — One can see that SPDL obtains poor performance in our experimental setup:
its end performance is significantly inferior to Random in 11/15 experiments (p < 0.05).
This can be explained by the fact that SPDL, by design, optimizes performance over a
Gaussian target distribution, while our test set is uniformly sampled over the task space
(see Section H.8 for details and potential fixes). However, following the publication of our

work, Klink et al. (2024) proposed an updated version of SPDL that uses optimal transport.

They showed that this allows their method to handle uniform target distributions, leading
to strong results in TeachMyAgent.
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Figure H.4: Averaged performance (48 seeds, with standard error of the
mean) for each ACL method on Parkour. We calculate every 5 million steps,
for which the method obtained statistically different (p < 0.05) results from
Random and indicate it with a star.

H.5.3 Global performance analysis using the Parkour

The second experiment we propose aims to more broadly benchmark ACL methods’
performance in the Parkour environment, which features most of the previously discussed
ACL challenges: 1) most tasks are unfeasible, 2) before each run, unknown to the teacher,
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the student’s embodiment is uniformly sampled among three morphologies (bipedal walker,
fish and chimpanzee), requiring the teacher to adapt curriculum generation to a diversity
of student profiles, and 3) tasks are generated through a CCPN-based PCG, creating a
rich task space with rugged difficulty landscape and hardly-definable prior knowledge (see
Section H.9).

We perform 48 seeded experiments (i.e. 16 seeds per morphology). To evaluate
performance, three test sets were hand-designed (one per embodiment) such that each
contains an even distribution between easy, medium and hard tasks. In terms of expert
knowledge for teachers, we only give reward mastery range. Without straightforward
initial easy task distribution to give to teachers requiring such knowledge (ADR and
SPDL), we set it randomly over the space for each new run. See Section H.10 for details.

Results — We present the evolution of performance of each teacher averaged over
all seeds (and thus all embodiments) in figure H.4 and gather the detailed results in
Section H.11.3. Interestingly, one can observe that best-performing methods do not use
expert knowledge. This is explained by the fact that few prior knowledge is provided to
the teachers in these experiments and, as shown in the challenge-specific experiments,
most methods using expert knowledge heavily rely on them to reach high-performance.
However, one can see that, while SPDL and Setter-Solver remain at the performance level
of Random, GoalGAN’s performance along training is (mostly) not significantly different
from those of Covar-GMM and RIAC, two methods not relying on expert knowledge, as
opposed to Goal GAN. On his side, ADR seems to plateau very fast and finally reach an
average performance significantly worse than Random (p < 0.05, see figure H.14). Indeed,
as the difficulty landscape of the Parkour environment is rugged, and the initial "easy" task
distribution randomly set, ADR is unable to progressively grow its sampling distribution
towards feasible subspaces. Finally, when looking specifically to each embodiment type,
results show the incapacity of all teachers to make the Deep RL student learn an efficient
policy with the climbing morphology (i.e., at most 1% of mastered tasks by the end of
training across all teachers), although we are able to show that high-performing policies
can be learned when considering a subspace of the task space (see our case study in
Section H.11.3). This might be due to the complexity of learning the climbing gait w.r.t
walking or swimming, as it requires for instance good coordination skills between the
arms and the grasping actions. For the two other morphologies (bipedal walker and
fish), results obtained are also low (respectively less than 60% and 50%) and have a high
variance (especially for the fish) considering that our test sets contain feasible tasks. This
makes the Parkour environment an open challenge for future work on designing ACL
algorithms.

H.6 Open-Source release of TeachMyAgent

With the open-source release of TeachMyAgent (version 1.0), we hope to provide a
tool that can be used as a step towards thorough comparison and better understanding of
current and future ACL methods. TeachMyAgent’s documented repository features the
code of our environments, embodiments, Deep RL students, as well as implementations
of all ACL methods compared in this work. All of these parts use APIs we provide
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such that one can easily add its ACL method, learning algorithm, and new embodiment
or environment. We hope this will foster community-driven contributions to extend
TeachMyAgent in order to broaden its impact and adapt it to the future of ACL. We also
provide the code we used to reproduce our experiments, as well as Jupyter notebooks that
allow us to generate all the figures shown in this work. Finally, we release the results of
our benchmark, allowing one to load them and compare its ACL method against baselines
without having to reproduce our large-scale experiments.

H.7 Discussion and Conclusion

In this work, we presented TeachMyAgent 1.0, a first extensive testbed to design and
compare ACL algorithms. It features unit-test environments to assess the efficiency of
a given teacher algorithm on multiple core skills and the Parkour environment, which
provides a challenging teaching scenario that has yet to be solved. We used TeachMyAgent
to conduct a comparative study of existing ACL algorithms. Throughout our experiments,
we identified that 1) current ACL approaches not using expert knowledge matched and
even outperformed (e.g., ALP-GMM) other approaches using high amounts of expert
knowledge, and 2) the Parkour environment is far from solved, which makes it a good
candidate as a testbed when designing new ACL approaches.

Limitations € future work. — An obvious extension of this work is the addition of
recent ACL approaches proposed during or after our experimental campaign (Dennis et al.,
2020; Zhang et al., 2020; Jiang et al., 2021b,a; Parker-Holder et al., 2022; Rutherford
et al., 2024). So far, all studied ACL algorithms have struggled to detect feasible task
subspaces in Parkour, hinting that more research is needed to improve the "progress niche
detection" ability of current teacher algorithms.

TeachMyAgent currently only features environments with low-dimensional PCG
systems. Designing new environments with higher-dimensional PCG, which might require
to learn low-dimensional representations on which to apply ACL algorithms, is an
interesting avenue. Besides, our current list of environments only studies 2D locomotion
tasks inspired by ALP-GMM'’s original paper (Portelas et al., 2020a) as well as other
works on Deep RL and 2D locomotion (Ha, 2019; Song et al., 2018; Gaier & Ha, 2019;
Wang et al., 2019, 2020). While we put maximal effort into building a thorough and fair
analysis of ACL methods, we believe extending TeachMyAgent with other environments
(e.g., ProcGen Cobbe et al. (2019), robotic manipulation) would make the benchmark even
more informative. Moreover, TeachMyAgent currently only focuses on maximizing the
student’s performance over the complete task space. We believe it is worth investigating
other objectives considered in the ACL literature, such as maximizing the performance
over a pre-defined hard subspace (Klink et al., 2020, 2024), or maximizing the worst case
generalization performance (Dennis et al., 2020; Parker-Holder et al., 2022; Rutherford
et al., 2024)

Finally, TeachMyAgent considers experiments and methods that scaffold the learning
of a single student. Recently, Portelas et al. (2020c) advocated for considering the

problem of Meta ACL: algorithms learning to learn to teach across a sequence of students.

TeachMyAgent could be extended to also consider Meta ACL teachers.
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H.8 Details on ACL baselines

In this section, we provide details about our implementations of ACL methods and
their hyperparameter tuning.

H.8.1 Implementation details

Random — We use as baseline a random teacher, which samples tasks using a
uniform distribution over the task space.

ADR - OpenAl et al. (2019) introduced Automatic Domain Randomization (ADR),
an ACL method relying on the idea of Domain Randomization (Tobin et al., 2017; Peng
et al., 2018). Instead of sampling tasks over the whole task space, ADR starts from a
distribution centered on a single example easy for the student and progressively grows
the distribution according to the learning agent’s performance. Using this mechanism,
it increases the difficulty of the tasks proposed to the student while still sampling in
previously seen regions in order to reduce potential forgetting.

This sampling distribution P, is parameterized by ¢ € R?** (with d the number of
dimensions of the task space). For each dimension, a lower and upper boundary are set
¢ = {oF, ¢pF}¢_,, allowing uniformly sampling on each dimension using these boundaries

and obtain a task \: .

Py(\) = [[U(r, ")

i=1

At the beginning, ¢ is centered on a single example (i.e. ¢ = ¢ Vi). Then, at each
episode, 1) ADR starts by sampling a new task A\ ~ P,. Following this, 2) ADR chooses
with a probability p, whether to modify A in order to explore the task space or not. It
thus samples a value € uniformly in [0; 1] and checks whether e < p;,. If this is not the
case, ADR sends A to the environment.

Otherwise, 3) ADR selects uniformly one of the dimensions of the task space, which
we will call j as an example. Following this, 4) one of the two boundaries d)]L or (ﬁf is
selected (50% chances for each boundary). Finally, 5) ADR replaces the j-th value of A
by the selected boundary and sends A to the environment.

Moreover, ADR keeps a buffer Df and D! for each dimension i in the task space.
Every time € is greater than p, and a value of A is replaced by one of the selected boundary,
ADR stores the episodic reward obtained at the end of the episode in the buffer associated
to the selected boundary (e.g., the episodic reward is stored in D¥ if the k-th value of
lambda was replaced by ¢L).

Every time one of the buffers’ size reaches m, the average p of episodic reward stored
is calculated. Then, p is compared to two thresholds ¢, and ¢ (being hyperparameters of
ADR) in order to know whether the boundary associated with the buffer must be reduced
or increased.

As an example, say that D}’s size reached m, meaning that ¢ is the associated
dimension (i.e., a A sampled got its k-th value replaced by ¢f m times). Its average
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episodic reward P is calculated. It is first compared to ¢y, and, if p < ¢;, ¢F is increased
by A (as ¢ is a lower boundary, this means that the task space is reduced). Similarly, if
P > t;, ¢L is decreased by A (expanding the task space).

If instead of DL we take DY, our task space has to be expanded or reduced in the
same way: if p < t;, then ¢ is reduced by A (as it is now an upper boundary of the task
space) and if p > ty then ¢} is increased by A. Finally, note that whenever one buffer’s
size reaches m, it is then emptied.

As no implementation was provided by the authors, we propose here an implementation
that is as close as possible to the algorithms given in OpenAl et al. (2019).

RIAC - Proposed in Baranes & Oudeyer (2009), Robust Intelligent Adaptive
Curiosity is based on the recursive splitting of the task space in hyperboxes, called
regions. One region is split into two whenever a pre-defined number max, of sampled
tasks originate from the region. The split value is chosen such that there is maximal
Learning Progress (LP) difference between the two regions, while maintaining a size mingy
(i.e., a ratio of the size of the whole task space) for each region. The number of possible
splits to attempt is parameterized by n. We reuse the implementation and the value of
the hyperparameters not mentioned here from Portelas et al. (2020a). RIAC does not
require expert knowledge.

Covar-GMM — Covar-GMM was proposed in Moulin-Frier & Oudeyer (2013). As

for RIAC, it does not require any expert knowledge and is based on learning progress.

The core idea of Covar-GMM is to fit a Gaussian Mixture Model (of maximum size maxy,)
every n episodes on recently sampled tasks concatenated with both a time dimension
and a competence dimension. The Gaussian from which to sample a new task is then
chosen proportionally to its respective learning progress, defined as the positive correlation
between time and competence. Additionally, in order to preserve exploration, Covar-GMM

has a probability 7, of uniformly sampling a task instead of using one of its Gaussians.

We use the implementation and hyperparameters from Portelas et al. (2020a), which uses
Absolute Learning Progress (ALP) instead of LP.

Moreover, as mentioned in Section H.5, we modified the implementation to make
it use expert knowledge (i.e., an initial distribution) when provided. Hence, instead of
uniformly sampling tasks over the whole task space during the bootstrap phase at the
beginning of training, Covar-GMM samples tasks from an initial Gaussian distribution of
tasks provided by the expert.

ALP-GMM - ALP-GMM is an ACL algorithm inspired by Covar-GMM, proposed
in Portelas et al. (2020a). Instead of relying on time competence correlation, which only
allows to compute ALP over a single GMM fit, it computes a per-task ALP from the
entire history of sampled tasks using a knn-based approach similar to those proposed
in Forestier et al. (2022). Recent tasks are periodically used to fit a GMM on recently
sampled tasks concatenated with their respective ALP value. The Gaussian from which to
sample is then selected based on its mean ALP dimension. ALP-GMM does not require
expert knowledge and has the same hyperparameters as Covar-GMM. We reused the

implementation and hyperparameters (except maxy, n and r,) provided by Portelas et al.
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(2020a).

Additionally, as for Covar-GMM, we added the possibility to ALP-GMM to bootstrap
tasks for an initial Gaussian distribution if the latter is provided, instead of uniformly
bootstrapping tasks.

Goal-GAN — Another teacher algorithm we included in this benchmark is Goal GAN
(Florensa et al., 2018), which relies on the idea of sampling goals (initially states to reach
in the environment) where the agent performs neither too well nor too badly, called
Goals Of Intermediate Difficulty (GOID). However, as this goal generation introduces
a curriculum in the agent’s learning, one can see the goal selection process as a task
selection process. We will thus call them tasks instead of goals in the following description.
For sampling, Florensa et al. (2018) proposed to use a modified version of a Generative
Adversarial Network (GAN) (Goodfellow et al., 2014) where the generator network is
used to generate tasks for the student given a random noise, and the discriminator is
trained to classify whether these tasks are of "intermediate difficulty". To define such
an "intermediate difficulty", Goal GAN uses a binary reward signal defining whether the
student succeeded in the proposed task. As our environments return scalar rewards, this
implies a function interpreter hand-designed by an expert (in our case, we set a threshold
on the scalar reward, as explained in Section H.10). For each task sampled, the teacher
proposes it multiple times (7,010uts) to the student and then calculates the average of
successes obtained (lying in [0;1]). Using a lower threshold R,,;, and an upper threshold
R0z, Goal GAN calculates if the average lies in this interval of tasks, neither too easy
(with an average of successes very high) nor too hard (with an average of successes very
low). If this is the case, this task is labeled as 1 for the discriminator (0 otherwise).
This new task is then stored in a buffer (except if it already exists in the buffer a task
at an euclidean distance smaller than e from our new task). Every time a task has to
be sampled, in order to prevent the GAN from forgetting previously seen GOIDs, the
algorithm has the probability p,;q of uniformly sampling from the buffer instead of using
the GAN. Finally, the GAN is trained using the tasks previously sampled every n episode.

Note that, in order to help the GAN generate tasks in a feasible subspace of the task
space at the beginning of training, GoalGAN can also pre-train its GAN using trivial
tasks. In the original paper, as tasks are states, the authors proposed to use the student
to interact with the environment and use collected states as achievable tasks. However, in
our case, this is not possible. We thus chose to reuse the same trick as the one in (Klink
et al., 2020), which uses an initial Gaussian distribution to sample tasks and label them
as positives (i.e., tasks of intermediate difficulty) to pre-train the GAN. See Section H.10
for more details on this initial distribution.

We reused and wrapped the version® of GoalGAN implemented by Klink et al. (2020),
which is a slightly modified implementation of the original one made by Florensa et al.
(2018). Our generator network takes an input that has the same number of dimensions
as our task space, and uses two layers of 256 neurons with ReL U activation (and TanH
activation for the last layer). Our discriminator uses two layers of 128 neurons. For e,
we used a distance of 10% on each dimension of the task space. As per Florensa et al.

Shttps://github.com/psclklnk/spdl
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(2018), we set R, to 0.25 and R,,.. to 0.75. Finally, as in the implementation made
by Klink et al. (2020), we set the amount of noise § added to each goal sampled by the
generator network as a proportion of the size of the task space.

Self-Paced — Proposed by Klink et al. (2020), Self-Paced Deep Reinforcement
Learning (SPDL) samples tasks from a distribution that progressively moves towards
a target distribution. The intuition behind it can be seen as similar to the one behind
ADR, as the idea is to start from an initial task space and progressively shift it towards
a target space, while adapting the pace to the agent’s performance. However, here, all
task distributions (initial, current, and target) are Gaussian distributions. SPDL thus
maintains a current task distribution from which it samples tasks and changes it over
training. This distribution shift is seen as an optimization problem using a dual objective:
1) maximizing the agent’s performance over the current task space, while 2) minimizing
the Kullback-Leibler (KL) divergence between the current task distribution and the target
task distribution. This forces the task selection function to propose tasks where the agent
performs well while progressively going towards the target task space.

Initially designed for non-episodic RL setups, SPDL, unlike all our other teachers,
receives information at every step of the student in the environment. After an offset of
norrseT first steps, and then every ngrep steps, the algorithm estimates the expected
return for the task sampled E,)[J (7, ¢)] using the value estimator function of the current
student (with p(c) the current task distribution, 7 the current policy of the student, and
J(m, c) the expected return for the task ¢ with policy 7).

With this, SPDL updates its current sampling distribution in order to maximize the
following objective w.r.t. the current task distribution p(c):

max E, ) [J(m, ¢)]
p(c)

Additionally, a penalty term is added to this objective function, such that the KL
divergence between p(c) and the target distribution p(c) is minimized. This penalty term
is controlled by an « parameter automatically adjusted. This parameter is first set to 0
for K, optimization steps and is then adjusted in order to maintain a constant proportion

¢ between the KL divergence penalty and the expected reward term (see Klink et al.

(2020) for more details on the way « is calculated). This optimization step is made such
that the shift of distribution is not bigger than € (i.e., s.t.Dky(p(c)||q(c)) < € with a shift
from p(c) to q(c)).

We reused the same implementation made by Klink et al. (2020) and wrapped it to
our teacher architecture. However, as shown in Section H.5, using a Gaussian target
distribution does not match with our Stump Tracks test set, where tasks are uniformly
sampled over the whole task space. In order to solve this issue, some adaptations to its
architecture could be explored (e.g., using a truncated Gaussian as target distribution to
get closer to a uniform distribution). Klink et al. (2024) proposed an updated version of
SPDL that uses optimal transport. They showed that this allows their method to handle
uniform target distributions, leading to strong results in TeachMyAgent.

For the value estimators, we used the value network of both our PPO and SAC
implementations (with the value network sharing its weights with the policy network for
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PPO). For the calculation of a, we chose to use the average reward, as in the experiments
of Klink et al. (2020). We did not use the lower bound restriction on the standard
deviation of the task distribution opp proposed in Klink et al. (2020) as our target
distributions were very large (see Section H.10).

Setter-Solver — Finally, the last ACL algorithm we implemented here is Setter-Solver
(Racaniere et al., 2020). In a very similar way to Goal-GAN, this method uses two neural
networks: a Judge (replacing the discriminator) and a Setter (replacing the generator),
outputting a task given a feasibility scalar in [0;1]. During the training, the Judge is
trained to output the right feasibility given a task sampled, and is used in the Setter’s
losses to encourage the latter to sample tasks where the predicted feasibility was close
to the real one. The Setter is also trained to sample tasks the student has succeeded
(i.e. using a binary reward signal as Goal-GAN) while maximizing an entropy criterion
encouraging it to sample diverse tasks.

For the implementation, Racaniere et al. (2020) provided code to help reproducibility
that implements both the Setter and Judge, but did not include losses or optimization
functions. Therefore, we provide here our own implementation of the full Setter-Solver
algorithm, trying to be as close as possible to the paper’s details. We reused the code
provided for the two neural networks and modified it to add losses, optimizers, and some
modifications to better integrate it to our architecture. We kept the tricks added in the
code provided by authors that uses a non-zero uniform function to sample the feasibility
and a clipped sigmoid in the Setter’s output. Concerning the generator network, we kept
the hyperparameters of the paper (i.e., a RNVP (Dinh et al., 2017) with three blocks of
three layers) except the size of hidden layers nyppen that we optimized. We also reused
the three layers of 64 neurons architecture for the Judge as per the paper. Note that
we used an Adam optimizer with a learning rate of 3- 10~ for both the Setter and the
Judge, while this was not specified for the Judge in Racaniere et al. (2020). We optimized
the upper bound § of the uniformly sampled noise that is added to succeed tasks in the
validity Setter’s loss, as well as the update frequency n.

We did not use the conditioned version of the Setter or Judge. Indeed, first we generate
the task before obtaining the first observation in our case, as opposed to Racaniere et al.
(2020), and also because the first observation of an embodiment is always the same, as
both our environments have a startpad (see Section H.9). Finally, we did not use the
additional target distribution (called desired goal distribution in the original paper) loss
that uses a Wassertein discriminator (Arjovsky et al., 2017) to predict whether a task
predicted belongs to the target distribution. Indeed, as shown in Racaniere et al. (2020),
using the targeted version of Setter-Solver offers more sample efficiency but leads to
similar final results. Moreover, in our case, a target distribution is known only in the
High expert knowledge setup of the challenge-specific experiments, in addition to having
this part not implemented at all in the code provided by the authors. We thus leave this
upgrade to future work.
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H.8.2 Hyperparameters tuning

In order to tune the different ACL methods to our experiments, we chose to perform
a grid search using our Stump Tracks environment with its original task space. As the
Parkour is partly extended from it, in addition of the challenge-specific experiments, this
environment offered us an appropriate setup. Each point sampled in the grid-search was
trained for 7 million steps (instead of the 20 million used in our experiments) with 16
seeds in order to reduce the (already high) computational cost. At the end of training, we
calculated the percentage of mastered tasks on the test set for each seed. The combination
of hyperparameters having the best average over its seeds was chosen as the configuration
for the benchmark.

In order to make the grid-search as fair as possible between the different ACL methods,
given that the number of hyperparameters differs from one method to another, we sampled
the same number of points for each teacher: 70 (+10). The hyperparameters to tune for
each teacher, as well as their values, were chosen following the recommendations given by
their original paper.

Moreover, we chose to tune the teachers in what we call their “original” expert
knowledge version (i.e., they have access to the same amount of prior knowledge as the
one they used in their paper). Hence, teachers requiring expert knowledge use our high
expert knowledge setup, and algorithms such as ALP-GMM use no expert knowledge.

Table H.2 shows the values we tested for each hyperparameter and the combinations
that obtained the best result.
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Table H.2: Hyperparameters tuning of the ACL methods.

ACL METHOD HYPERPARAMETER‘ POSSIBLE VALUES ‘BEST VALUE

ADR tr [0, 50] 0
ADR tir [180, 230, 280] 180
ADR P [0.3,0.5,0.7] 0.7
ADR m [10, 20] 10
ADR A [0.05,0.1] 0.1
RIAC maxg [50, 150, 250, 350] 150
RIAC n 25,50, 75, 100] 75
RIAC ming [0.0677,0.1,0.1677,0.2] 0.1
COVAR-GMM n [50, 150, 250, 350] 150
CovAR-GMM maxy [5, 10,15, 20] 15
CovAR-GMM Ty [0.05,0.1,0.2,0.3] 0.1
ALP-GMM n 50, 150, 250, 350] 150
ALP-GMM mazy [5, 10, 15, 20] 10
ALP-GMM Tp [0.05,0.1,0.2,0.3] 0.05
GOALGAN 5 [0.01,0.05, 0.1] 0.01
GOALGAN n [100, 200, 300] 100
GOALGAN Potd 0.1,0.2,03] 0.2

GOALGAN Nyollouts (2,5, 10] 2

SPDL NOFFSET [100000, 200000] 200000
SPDL NSTEP [50000, 100000] 100000

SPDL K, [0, 5, 10] 0
SPDL ¢ [0.05,0.25,0.5] 0.05
SPDL ¢ 0.1,0.8] 0.8
SETTER-SOLVER n [50, 100, 200, 300] 100
SETTER-SOLVER 1) [0.005,0.01,0.05,0.1] 0.05
SETTER-SOLVER THIDDEN [64, 128,256, 512] 128

H.9 Environment details

In this section, we give details about our two environments, their PCG algorithm, as
well as some analysis about their task space. Note that our two environments follow the
OpenAl Gym’s interface and provide after each step, in addition of the usual information
(observation, reward, and whether the episode terminated), a binary value set to 1
if the cumulative reward of the episode reached 230. Additionally, we provide extra
information and videos of our environments and embodiments, as well as policies learned
at http://developmentalsystems.org/TeachMyAgent/.
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H.9.1 Stump Tracks

We present the Stump Tracks environment, an extended version of the environment
introduced by Portelas et al. (2020a). We only use two of the initially introduced
dimensions of the procedural generation of task: stumps’ height u, and spacing A,s. As
in Portelas et al. (2020a), s is used as the mean of a Gaussian distribution with standard
deviation 0.1. Each stump has thus its height sampled from this Gaussian distribution
and is placed at distance A, from the previous one. We bound differently this task space
depending on the experiment we perform, as explained in Section H.10.

We kept the same observation space with 10 values indicating distance of the next
object detected by lidars, head angle and velocity (linear and angular), as well as
information from the embodiment (angle and speed of joints and also whether the lower
limbs have contact with the ground). For information concerning the embodiment, the
size of observation depends on the embodiment, as the number of joints varies (see below
in H.9.3). We also kept the action space controlling joints with a torque.

H.9.2 Parkour

We introduce the Parkour, a Box2D parkour track inspired by the Stump Tracks
and the environment introduced in Wang et al. (2020). It features different milieus in a
complex task space.

Procedural generation

CPPN-encoded terrain — First, similarly to the Stump Tracks, our Parkour features
a ground (that has the same length as the one in Stump Tracks) where the agent starts
at the leftmost side and has to reach the rightmost side. However, this ground is no
longer flat and rather, as in Wang et al. (2020), generated using a function outputted by
a neural network called CPPN (Stanley, 2007). This network takes in input a z position
and outputs the associated y position of the ground. Using this, one can slide the CPPN
over the possible x positions of the track in order to obtain the terrain. This method
has the advantage of being able to easily generate non-linear and very diverse terrains
as shown in Wang et al. (2020), while being light and fast to use as this only needs
inference from the network. While CPPNs are usually used in an evolutionary setup
where the architecture and weights are mutated, we chose here to rather initialize an
arbitrary architecture and random weights and keep them fixed. For this architecture, we
chose to use a four layers MLP with 64 units per layer and an alternation of TanH and
Softplus activations (except for the output head which uses a linear activation) inspired
by Ha (2016). Weights were sampled from a Gaussian distribution with mean 0 and
standard deviation of 1. In addition of its x input, we added to our network three inputs
that are set before generating the terrain as parameters controlling the generation. This
vector 6 of size 3 acts in a similar way as noise vector does in GANs for instance. Its
size was chosen such that it allows for analysis of the generation space and maintains the
overall task space’s number of dimensions quite small. As for the parameters in Stump
Tracks, we bounded the space of values an ACL method could sample in 8. For this, we
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provide three hand-designed setups (easy, medium and hard) differing from the size of
the resulting task space and the amount of feasible tasks in it (see Section H.10.4).

Moreover, in addition of the y output of the ground, we added another output head
Y. in order to create a ceiling in our tracks. As in Stump Tracks, the terrain starts with a
flat startpad region (with a fixed distance between the ground and the ceiling) where the
agent appears. Once Y = (y;)iex and Y, = (y., )iex generated by the CPPN, with X all
the possible x positions in the track, we align them to their respective startpad:

Yi = Y; + startpad, —yo Vi € Y

Ye; = Yo, + startpad, — y., Vi € Y.

with startpad,, startpad. being respectively the y position of the ground startpad and
ceiling startpad, and yo, y., respectively the first y position of the ground and the ceiling
outputted by our CPPN.

Using this non-linear generator (i.e., CPPN) allows us to have an input space where
the difficulty landscape of the task space is rugged. Indeed, in addition of generating two
non-linear functions for our ground and ceiling, the two latter can cross each other, creating
unfeasible tasks (see figure H.6). Additionally, our CPPN also makes the definition of
prior knowledge over the input space more complex, as shown in figure H.5.

Finally, as shown in figure H.6, we smoothed the values of Y and Y, by a parameter §
(= 10 in the training distribution) in order to make the roughness of the terrains adapted
to our embodiments.
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Figure H.5: Overview of the input space of 0. First, in a) one can see the
function generated when all the values of the input vector are set to zero.
Secondly, in b) we can see that small changes over the space lead to similar
functions and that big changes lead to very different results, showing that
local similarity is maintained over the task space. Finally, c) shows how the
difficulty landscape of 6 can be rugged, as moving along the second dimension
leads to terrains having a very different difficulty level.
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Figure H.6: Here are some examples of generated tasks in the Parkour
environment. While most of them seem too hard for a classic bipedal walker,
the bottom left task is a good example of an unfeasible task, no matter which
embodiment is used.

Creepers — Once the terrain is generated, we add what we call "creepers". Similarly
to the stumps, we create objects at distance A, from one another and of height sampled
using a Gaussian distribution of mean p. and standard deviation 0.1 (the width can
also be controlled but was fixed to 0.25 in our experiments). However, creepers are not
obstacles for agents as stumps but rather graspable objects that embodiments can go
through. Moreover, even though not used in our experiments, we provide the possibility
to make creepers more realistic by dividing every creeper in multiple rectangles of height
at most 1 linked with a rotating joint. As shown on our website, this creates creepers on
which the climbers can swing.

Water — Finally, we added a last dimension to our task space controlling the "water"

level. Water is simulated using a rectangle object that the agent can go through and in
which physics change (see below). This rectangle’s width equals the terrain’s width and
its height is controlled by a parameter 7 € [0; 1] with 0 being an arbitrary lower limit the
ground can reach and 1 the highest point of the current ceiling (generated by the CPPN
for the current task).

Physics

As previously mentioned, we introduced creepers and water along with new physics.
First, in order to make our creepers graspable by the agents, we added sensors to the
end of limb of certain embodiments (see Section H.9.3 below). Every time one of these
sensors enters in contact with a creeper, we look at the action in the action space of the
agent that is associated to this sensor. If its value is greater than 0, we create a rotational
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joint between the sensor and the creeper at the contact point. As long as this action is
greater than 0, the joint remains. As soon as the action goes negative or equals 0, we
delete the joint (releasing the agent’s limb from the creeper) and start watching again for
contact. Note that, in order to better see whether the agent grasps a creeper, we color its
sensors in red when a joint exists and in yellow otherwise (see our website). Additionally,
in order to help the learning agent, we also make the ceiling graspable.

Secondly, concerning the water, we simulated a buoyancy force when an object enters
water given its density compared to the water’s density (set to 1). In addition, we
implemented a "drag" and a "lift" force that simulate the resistance applied when an
object moves in water and slows down the movement. Finally, we added a "push" force
applied to an object having an angular velocity. This force simulates the fact that applying
a torque to a rotational joint makes the object attached to the joint "push" the water
and move (i.e., have a linear force applied). With these forces, we were able to simulate
in a simplified way some physics of water, which resulted in very natural policies learned
from our agents (see our website).

Finally, we simulated the fact that each embodiment is suited for one (or several)
milieu, creating types of agents. Indeed, we first consider swimming agents that die (i.e.,
the actions sent by the Deep RL student to the environment no longer have effects on the

motors of the embodiment) after spending more than 600 consecutive steps outside water.

On the contrary, the two other types, climbers and walkers, cannot survive underwater
for more than 600 consecutive steps. Both walkers and swimmers are allowed to have
collisions with their body (including their head in the Parkour), whereas climbers are
not allowed to touch the ground with any part of their body. Note that, while walkers
appear with their legs touching the ground, swimmers appear a bit above the ground and
climbers appear with all of their sensors attached to the ceiling (see figure H.1).

All of these physics introduce the fact that an ACL teacher has to propose tasks in
the right milieu for the current embodiment (i.e., mostly underwater for swimmers so
that they do not die, with creepers and a ceiling high enough for climbers so that they do
not touch the ground or die in water and with no water for walker so that they do not
drown) in order to make the student learn.

Observation and action space

As in Stump Tracks, the agent is rewarded for moving forward and penalized for
torque usage. An episode lasts 2000 steps unless the agent reaches the end of the track
before or if a part of its body touches the ground if the embodiment is a climber. We
also reused the 10 lidars per agent that were used in the Stump Tracks with all the lidars
starting from the center of the head of the morphology. However, we modified them such
that three configurations of covering exist (see the three tasks shown in figure H.1):

e 90° from below the agent to ahead of it (used by walkers, as in Stump Tracks)
e 180° from below the agent to above it (used by swimmers)

e 90° from ahead of the agent to above it (used by climbers)
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Moreover, in addition of the distance to the next object detected by each lidar, we
added an information concerning the type of object detected by the lidar (—1 if water, 1 if
creeper, 0 otherwise) such that the agent knows whether the object detected is an obstacle
or can be passed through. Note also that once their origin point overlaps an object (e.g.,
water), lidars no longer detect it. Hence the lidars of an agent underwater no longer
detect water (which would have made lidars useless as they would have only detected
water). Therefore, in order to inform the Deep RL student whether the embodiment is
underwater, we added an observation that is set to 1 if the agent’s head is under the
water level and 0 otherwise. Similarly, we added a binary observation telling whether the
agent is dead or not (i.e., the actions we send to its motors no longer have impact). In
addition, we kept the same information concerning the agent’s head as in Stump Tracks
(angle, linear velocity and angular velocity) as well as observations for each motor (angle
and speed of joint as well as contact information for some of the attached limb). Finally,
we added two binary observations per sensor (if the agent has sensors) telling whether
the sensor has contact with a graspable surface and whether it is already attached with a
joint. Without considering the information about motors and sensors which depend on
the morphology, all of the information listed above create an observation vector of size 26.
Note that, additionally, we provide the information to the teacher at each step whether
the cumulative reward of the episode has reached 230 for the users using a binary reward.

Finally, for the action space, we kept the same behaviour as the one used in Stump
Tracks (i.e., each agent has motors which are controlled through a torque value in [—1;1]).
Moreover, we added an action in [—1; 1] per sensor for climbers to say whether this sensor
must grasp (if it has contact with a graspable surface) or release.

H.9.3 Morphologies

We included in our benchmark the classic bipedal walker as well as its two modified
versions introduced in Portelas et al. (2020a): the short bipedal and the quadrupedal.
For these three agents, we kept in their implementation the additional penalty for having
an angle different than zero on their head, which was already in Portelas et al. (2020a).
Additionally, we created new walkers such as the spider or the millipede shown in figure
H.1. See our repository and website for the exhaustive list of embodiments we provide.

We introduce another type of morphologies: climbers. We propose two agents: a
chimpanzee-like embodiment, as well as its simplified version without legs (reducing the
action space to simplify the learning task). These two agents have two arms with two
sensors at their extremity allowing them to grasp creepers or the ceiling.

Both walkers and climbers have a density of 1 on their legs and arms, and a density
of 5 on their body and head, making them simply "sink" in water.

Finally, we created swimming morphologies with each of their body part having the
same density as the water, making them in a zero-gravity setting when fully underwater.
We propose a fish-like embodiment (see figure H.1) with a fin and a tale that can wave
its body to move (as well as moving its fin).

Note that we also included an amphibious bipedal walker allowed to survive both
underwater and outside water. This gave interesting swimming policies as shown on our
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website ( http://developmentalsystems.org/TeachMyAgent/).

H.10 Experimental details

In this section, we give details about the setups of our experiments.

H.10.1 Deep RL Students

We used the 0.1.1 version of OpenAl Spinningup’s implementation of SAC that uses
Tensorflow, as in Portelas et al. (2020a). We modified it such that a teacher could set a
task at each reset of the environment. We also kept the same hyperparameters as the
ones used in Portelas et al. (2020a):

e A two layers feedforward network with 400/300 units per hidden layer (ReLU
activation) for both the value and policy network (using TanH activation on the
output layer for the latter)

e An entropy coefficient of 0.005
e A learning rate of 0.001

e A mini-batch update every 10 steps using 1000 randomly sampled experiences from
a buffer of size 2 million

For PPO, we used OpenAl Baselines’ (Tensorflow) implementation. We used the
same two-layer neural network as in SAC for the policy and value networks (which share
weights). We modified the runner sampling trajectories from the environment in order
to use a single synchronous runner instead of multiple asynchronous ones. We used the
environment’s wrappers proposed in the OpeanAl Baselines’ implementation to clip the
actions and normalize the observations and rewards. We added a test environment (as
well as a teacher that sets tasks) to test the agent’s performance every 500000 steps (as
done with SAC). We also normalize the observations and rewards in this test environment
using the same running average as the one used in the training environment, so that agent
does not receive different information from both environments. We send to the teacher
and monitor the original values of reward and observation sent by the environment instead
of normalized ones. We set the A factor of the Generalized Advantage Estimator to 0.95,
the clipping parameter € to 0.2 and the gradient clipping parameter to 0.5. Finally, we
tuned the following hyperparameters using a grid-search on Stump Tracks for 10 million
steps with stumps’ height and spacing respectively in [0; 3] and [0; 6]:

e Size of experiences sampled between two updates: 2000
e Number of epochs per update: 5
e Learning rate: 0.0003

e Batch size: 1000
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e Value function coefficient in loss: 0.5

e Entropy coefficient in loss: 0.0

Note that for both our Deep RL students, we used ~ = 0.99.

H.10.2 General experimental setup

We call an experiment the repetition, using different seeds, of the training of a Deep
RL student for 20 million steps using tasks chosen at every reset of the environment by
a selected ACL teacher. The seed is used to initialize the state of random generators
used in the teacher, Deep RL student and environment. We provide to the teacher the
bounds (i.e., a min and maz value for each dimension) of the task space before starting
the experiment. The Deep RL student then interacts with the environment and asks
the ACL teacher to set the task (i.e., a vector controlling the procedural generation) at
every reset of the environment. Once the episode ended, the teacher received either the
cumulative reward or a binary reward (set to 1 if the episodic reward is greater than
230) for GoalGAN and Setter-Solver. Teachers like SPDL can additionally access the
information sent by the environment at every step, allowing non-episodic ACL methods
to run in our testbed.

Every 500000 steps of the Deep RL student in the environment, we test its performance
on 100 predefined tasks (that we call test set). We monitor the episodic reward obtained
on each of these tasks. We also monitor the average episodic reward obtained on the tasks
seen by the student during the last 500000 steps. We ask the teacher to sample 100 tasks
every 250000 steps of the Deep RL student and store these tasks to monitor the evolution of
the generated curriculum (see at http://developmentalsystems.org/TeachMyAgent/).
For this sampling, we use the non-exploratory part of our teachers (e.g., ALP-GMM
always samples from its GMM or ADR never sets one value to one of its bounds) and
do not append these monitoring tasks to the buffers used by some teachers to avoid
perturbing the teacher’s process.

In our experiments, we were able to run 8 seeds in parallel on a single Nvidia Tesla
V100 GPU. In this setup, evaluating one ACL method requires approximately (based on
ALP-GMM’s wall-clocktime):

e 4608 GPU hours for all skill-specific experiments with 32 seeds.

e 168 GPU hours for the 48 seeded Parkour experiment.
Running both experiments would require 4776 GPU hours, or 48 hours on 100 Nvidia

Tesla V100 GPUs. Users with smaller compute budgets could reduce the number of seeds
(e.g., divide by 3) without strong statistical repercussions.

H.10.3 Stump Tracks variants

We used the Stump Tracks environment to create our challenge-specific comparison of
the different ACL methods. We leveraged its two-dimensional task space (stumps’ height
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and spacing) to create experiments highlighting each of the 6 challenges listed in Section
H.1. Each experiment used 32 seeds.

Test sets

We used the same test set in all our experiments on Stump Tracks in order to have a

common test setup to compare and analyze the performance of our different ACL methods.

This test set is the same as the one used in Portelas et al. (2020a) with 100 tasks evenly
distributed over a task space with p, € [0;3] and A, € [0;6].

Experiments

In the following paragraphs, we detail the setup of each of our experiments used in
the challenge-specific comparison.

Expert knowledge setups — We allow three different amounts of prior knowledge
about the task to our ACL teachers:

e No expert knowledge
e Low expert knowledge

o High expert knowledge

First, in the No expert knowledge setup, no prior knowledge concerning the task is

accessible. Hence, no reward mastery range (ADR, GoalGAN, and Setter-Solver) is given.

Additionally, no prior knowledge concerning the task space like regions containing trivial
tasks for the agent (e.g., for ADR or SPDL’s initial distribution) or subspace containing
the test tasks (e.g., for SPDL’s target distribution) are known. However, we still provide
these two distributions using the following method:

e Initial distribution: we sample the mean pu;nyrrar of a Gaussian distribution
uniformly random over the task space. We choose the variance of each dimension
such that the standard deviation over this dimension equals 10% of the range of
the dimension (as done when expert knowledge is accessible).

e Target distribution: we provide a Gaussian distribution whose mean is set to the
center of each dimension and standard deviation to one fourth of the range of each
dimension (leading to more than 95% of the samples that lie between the min and
max of each dimension). This choice of target distribution was made to get closer
to our true test distribution (uniform over the whole task space), while maintaining
most of the sampled tasks inside our bounds. However, it is clear that this target
distribution is not close enough to our test distribution to make SPDL proposing a
good curriculum and lead to an agent learning an efficient policy to perform well in
our test set. As mentioned in Section H.5 and Section H.8, using a Gaussian target
distribution is not suited to our setup and would require modifications to make the
target distribution match our true test distribution.

289



290

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL

Hence in this setup, only ALP-GMM, RIAC, Covar-GMM and SPDL (even though its
initial and target distribution do not give insightful prior knowledge) can run.

In the Low expert knowledge setup, we give access to the reward mastery range.
Therefore, Goal GAN, Setter-Solver, and ADR can now enter the comparison. The initial
distribution is still randomly sampled as explained above. It is used by GoalGAN to
pre-train its GAN at the beginning of the training process, but also by ADR, which starts
with a single example being purnrrrar-

Finally, for the High expert knowledge setup, we give access to the information about
regions of the task space. While the standard deviation of the initial distribution is still
calculated in the same way (i.e., 10% of the range of each dimension), we set pynrrrar to
[0; 6], with the values being respectively us and A;. Hence, ADR now uses the task [0; 6]
as its initial task, and Goal GAN pre-trains its GAN with this distribution containing
trivial tasks for the walking agent (as stumps are very small with a large spacing between
them). SPDL also uses this new initial distribution, but keeps the same target distribution
as we could not provide any distribution matching our real test distribution (i.e., uniform).
Note that, as mentioned in Section H.8, ALP-GMM and Covar-GMM use this initial
distribution in their bootstrap phase in this setup.

Mostly unfeasible task space — 1In this experiment, we use SAC with a classic
bipedal walker. We consider stumps with height greater than 3 impossible to pass for
a classic bipedal walker. Hence, in order to make most of the tasks in the task space
unfeasible, we use in this experiment s € [0;9] (and do not change A, € [0;6]) such that
almost 80% of the tasks are unfeasible.

Mostly trivial task space — Similarly, we use in this experiment p, € [—3;3] (the
Stump Tracks environments clips the negative values with u, = max(0, p,)). Hence 50%
of the tasks in the task space will result in a Gaussian distribution used to generate
stumps’ height with mean 0. We also use SAC with a classic bipedal walker.

Forgetting students — We simulate the catastrophic forgetting behaviour by resetting
all the variables of the computational graph of our Deep RL student (SAC here) as well
as its buffers every 7 million steps (hence twice in a training of 20 million steps). All
variables (e.g., weights, optimizer’s variables...) are reinitialized the same way they were
before starting the training and the experience buffer used by SAC is emptied. Note that
we also use the classic bipedal walker as embodiment and did not modify the initial task
space (us € [0;3] and A € [0;6]).

Rugged difficulty landscape — In order to create a rugged difficulty landscape over
our task space, we cut it into 4 regions of the same size and shuffle them (see algorithm 3).
The teacher then samples tasks in the new task space using interpolation (see algorithm
4), which is now a discontinuous task space introducing peaks and cliffs in the difficulty
landscape. While the cut of regions is always the same, the shuffling process is seeded at
each experiment.
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Algorithm 3 Cutting and shuffling of the task space.

Input: Number of dimensions D, bounds (min;);c;p) and (max;);eip), number of cuts
k
for d € [D] do

Initialise arrays Og4, Sq

size < |maxg — ming|/k

for j € [k] do

Store pair (ming + j * size, ming + (j + 1) * size) in Oy and Sy
Shuflle order of pairs in Sy

Algorithm 4 Interpolate sampled task in the shuffled task space.

Input: Number of dimensions D, task vector 7, number of cuts k
Initialise the vector Z of size D
for d € [D] do
for j € [k] do
Get pair o; in Oy
Initialize [ with the first element of o;
Initialize h with the second element of o;
if [ <75 < h then
Get pair s; in Sy
Get 3 as the interpolation of 7y from the interval o; to the interval s;
Set Zy =
End the loop
Return 7

Robustness to diverse students — Finally, in order to highlight the robustness of an
ACL teacher to diverse students, we perform 4 experiments (each with 32 seeds) and then
aggregate results. We use the initial task space of Stump Tracks, but use both PPO and
SAC, as well as two different embodiments: the short bipedal walker and the spider. Each
embodiment is used both with PPO and SAC (hence 2 experiments per embodiment and
thus a total of 4 experiments). We then aggregate the 128 seeds into a single experiment
result.

H.10.4 Parkour experiments

We perform a single experiment in the Parkour environment using 48 seeds. Among

these seeds, 16 use a classic bipedal walker, 16 a chimpanzee, and 16 a fish embodiment.

We set the bounds of the task space to the following:
e CPPN’s input vector 6 € [—0.35,0.05] x [0.6,1.0] x [-0.1,0.3]
e Creepers’ height p. € [0;4]

e Creepers’ spacing A, € [0; 5]
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e Water level 7 € [0;1]

Note that the above CPPN’s input space is considered as our medium one. We also
provide the easy space (6 € [—0.25, —0.05] x [0.8,1.0] x [0.0,0.2]) as well as the hard one
(0 € [-1,1] x [-1,1] x [-1,1]). Both the easy and medium spaces were designed from our
hard task space. Their boundaries were searched such that the task space contains feasible
tasks while maintaining diverse terrains. They differ in their ratio between feasible and
unfeasible tasks.

Test sets

Unlike in the Stump Track experiments, we needed in the Parkour environment
different test sets as our three embodiments (i.e. bipedal walker, chimpanzee, fish) are
not meant to act and live in the same milieu (e.g. swimmers do not survive in tasks not
containing water). Therefore, creating a test set composed of tasks uniformly sampled
would not allow for assessing the performance of the current embodiment. Hence, we
made three different test sets for Parkour, each consisting of 100 tasks. As the task
space previously defined is mainly composed of unfeasible tasks for any embodiment, we
hand-designed each of the three test sets with the aim of showcasing the abilities of each
morphology type, as well as showing the ability of the learned policy to generalize. Each
test set has 60 tasks that belong to the training task space and 40 out-of-distribution
tasks (using tasks outside the medium CPPN’s input space as well as smoothing values
different than 10 for the § parameter). They also share the same distribution between easy
(1/3), medium (1/3), and hard (1/3) tasks. We chose each task so that it seemed possible
given the physical capacities of our embodiments. See figure H.7 for some examples of
the test tasks.
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Figure H.7: We show some examples of the tasks belonging to our Parkour’s
test sets. The first line shows tasks from the walkers’ test set, the second
line from the swimmers’ one, and finally, the last line for climbers.

H.11 Additional results

In this section, we provide additional results on experiments presented in Section H.5
as well as case studies. As mentioned in Section H.10, we monitor both the episodic
reward on each of the test tasks and the average episodic reward on training tasks every
500000 steps for each seed. We use the episodic reward on test tasks to calculate our
percentage of "mastered" tasks metric, which calculates the percentage of tasks on which
the agent obtained an episodic reward greater than 230. Additionally, we compare two
algorithms in an experiment using Welch’s t-test between their population of seeds.

H.11.1 Original Stump Tracks

We trained our SAC student for 20 million steps on the original Stump Track task
space (i.e., us € [0;3] and A, € [0;6]) with each teacher and each expert knowledge
setup. We used the best performance of each prior knowledge configuration as a baseline
indication in figures H.1 and H.9. As in our challenge-specific experiments, we used 32
seeds as well as the same test set of 100 evenly distributed tasks. Results can be found in
table H.3.
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Table H.3: Percentage of mastered tasks after 20 million steps on the original
Stump Tracks challenge (i.e., ps € [0;3] and A, € [0;6]). Results shown are
averages over 32 seeds along with the standard deviation. We highlight the
best results in bold, which then acted as an upper baseline indication in the
challenge-specific comparisons.

ALGORITHM No EK Low EK HicH EK

ADR - 24.1 (£ 20.8) 43.4 (£ 7.2)
ALP-GMM 52.1 (£ 5.9) 47.1 (£ 13.9) 49.3 (+5.9)
Covar-GMM 43.0 (£ 9.1) 40.25 (£ 16.5) 45.2(£ 10.1)
GOALGAN - 29.9 (£ 26.2) 51.9 (+ 7.3)
RIAC 40.5 (£ 84) 39.6 ( (£ 11.2) 42.2 (+ 5.4)
SPDL 20.8 (+ 19.4) 18.5 (+ 20.8) 34.0 (£ 10.6)

SETTER-SOLVER 25.3 (+ 10.7)  36.6(% 10.2) 37.4 (£ 9.8)

H.11.2 Challenge-specific comparison

Overall results

We show the performance after 20 million steps of each ACL teacher on each challenge.
Results are gathered in tables H.4, H.5, and H.6, as well as in figure H.8, where we show
the results of Welch’s t-test between all methods on every challenge.



Additional results

Table H.4: Percentage of mastered tasks after 20 million steps with no prior
knowledge in each challenge. Results shown are averages over all seeds along
with the standard deviation. We highlight the best results in bold.

Algorithm Mostly unf. Mostly triv.  Forgetting stud.  Rugged dif. Diverse stud.
Random 18.0 (£ 10.5) 22.2 (£ 15.2)  27.8 (£ 14.6)  30.3 (£ 7.7) 22.3 (& 11.5)
ALP-GMM  42.8 (+ 6.6) 43.7 (£ 6.0) 42.1 (+6.9) 42.5 (+ 4.8) 315 (+ 9.2)
Covar-GMM  39.0 (£ 9.9) 32.7 (+ 16.0) 31.3 (£ 16.2) 394 (£ 7.4) 32.3 (£ 10.6)
RIAC 22.1 (£ 14.5) 20.0 (£ 10.9)  36.8 (£6.9) 364 (£7.9) 259 (& 11.3)
SPDL 6.4 (£10.2) 153 (£9.9) 104 (+12.9) 19.3 (£ 16.2) 8.9 (+ 14.4)

Table H.5: Percentage of mastered tasks after 20 million steps with low prior
knowledge in each challenge. Results shown are averages over all seeds along
with the standard deviation. We highlight the best results in bold.

Algorithm Mostly unf. Mostly triv.  Forgetting stud. Rugged dif. = Diverse stud.
Random 18.0 (+ 10.1) 18.0 (£ 7.1) 27.8 (£ 14.6) 30.3 (£ 7.7) 223 (£ 11.5)
ADR 78 (£17.9) 222 (+15.2) 21.2 (£21.2) 17.0 (+ 19.6) 15.6 (& 19.1)
ALP-GMM  43.5 (+ 13.0) 43.0 (£ 9.0) 41.6 (+ 12.5) 44.2 (£ 7.1) 31.3 (+ 9.4)
Covar-GMM  31.2 (+ 16.8) 42.0 (£ 8.4) 31.5 (£ 18.4) 34.3 (£ 10.7) 32.1 (£ 9.6)
Goal GAN 12.7 (£ 16.2) 384 (£ 16.1) 9.3 (£ 15.8) 347 (£ 19.1) 16.2 (£ 17.5)
RIAC 20.5 (+ 14.0) 21.3 (+ 8.8) 34.3 (£ 12.5) 38.3 (£ 11.3) 26.0 (£ 11.7)
SPDL 6.7 (£ 10.2) 179 (+ 12.2) 10.6 (£ 12.2) 18.1 (£ 15.8) 9.2 (£ 14.2)
Setter-Solver  25.3 (& 10.7) 35.5 (£ 8.9)  33.9 (+ 12.5) 316 (+ 11.3) 25.4 (+ 9.0)

Table H.6: Percentage of mastered tasks after 20 million steps with high
prior knowledge in each challenge. Results shown are averages over all seeds
along with the standard deviation. We highlight the best results in bold.

Algorithm Mostly unf. Mostly triv.  Forgetting stud. = Rugged dif. = Diverse stud.
Random 18.0 (£ 10.1)  18.0 (£ 7.1) 27.8 (+ 14.6) 30.3 (£ 7.7) 223 (£ 11.5)
ADR 45.3 (£ 6.7) 32.5 (£ 6.2) 39.8 (£ 10.8) 17 (£ 20.9) 32.3 (£ 9.7)
ALP-GMM  48.4 (+ 11.2) 44.3 (+ 14.2)  43.0 (£ 9.0) 42.5 (£ 7.3) 298 (+ 8.8)
Covar-GMM  38.2 (£ 11.9) 39.6 (£ 10.3) 39.5 (£ 12.5) 41.3 (£ 7.0) 32.6 (+ 10.2)
GoalGAN 39.7 (£ 10.1) 45.6 (£ 13.5) 234 (£ 19.7) 41.2 (£ 12.6) 27.5 (£ 9.4)
RIAC 25.2 (£ 12.3) 22.1 (£ 11.1) 37.7 (£ 12.5) 37.7 (£ 88) 258 (£ 11.7)
SPDL 191 (+12.5) 229 (£6.9) 129 (£ 11.2)  31.0 (£ 11.2) 154 (+ 15.1)
Setter-Solver  28.2 (£ 9.7)  33.7 (£ 10.8) 37.4 (£ 8.7) 34.7 (£ 81) 24.0 (£9.8)
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Figure H.8: Performance of the different teachers at the end of training in
every experiment of our challenge-specific comparison. We plot as bars the
average percentage of mastered tasks for each ACL method. Additionally, we
compare in every experiment all possible couples of teacher methods using
Welch’s t-test and annotate the significantly different (p < 0.05) ones.
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Case study: Sample efficiency

In this section, we take a look at the sample efficiency of the different ACL methods
using their performance after only 5 million steps. We reuse the same radar chart as in
Section H.5 in figure H.9.

Looking at results, one can see the impact of ACL in the mostly unfeasible challenge,
as some methods (e.g., ALP-GMM or ADR with high expert knowledge) already reach
twice the performance of random after only 5 million steps. This highlights how leveraging
a curriculum adapted to the student’s capabilities is key when most tasks are unfeasible.
On the other hand, when the task space is easier (as in the mostly trivial challenge),
Random samples more tasks suited for the current student’s abilities, and the impact of
Curriculum Learning is diminished.

Having a difficult landscape with ruggedness makes the search for learnable and
adapted subspaces harder. Figure H.9 shows that only 5 million steps are not enough,
even for teachers such as ALP-GMM or Covar-GMM, theoretically more suited for rugged
difficulty landscapes, to explore and leverage regions with high learning progress.

Finally, one can see the strong impact of a well designed initial distribution of tasks
in the beginning of learning. Indeed, both ADR and GoalGAN already almost reach their
final performance (i.e., the one they reached after 20 million steps shown in figure H.1)
after 5 million steps in the High ezpert knowledge setup, as they know where to focus and
do not need exploration to find feasible subspaces. Similarly, adding expert knowledge
to ALP-GMM increases its performance compared to the no and low expert knowledge
setups, helping it focus the bootstrapping process on a feasible region. Leveraging this
initial task distribution, GoalGAN obtains the best results in 3/5 challenges after 5 million
steps with high expert knowledge. This shows, in addition of the results from Section
H.5, that GoalGAN is a very competitive method, especially when it has access to high
expert knowledge.
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Figure H.9: Performance of ACL methods measured after 5 million
steps. Results are presented as an order of magnitude of the performance of
Random. Performance is defined as the average percentage of mastered test
tasks over all 32 seeds. We also provide the same indications (¥) of the best
performance (measured after 5 million steps) on the original Stump Tracks
experiment as in figure H.1. Finally, we indicate on each axis which method
performed significantly better than Random (p < 0.05) using colored stars
matching each method’s color (e.g., * for Covar-GMM, * for ADR). EK:
Ezpert Knowledge.

Case study: On the difficulty of GoalGAN and SPDL
to adapt the curriculum to forgetting students

As mentioned in Section H.5, both GoalGAN and SPDL struggled on the forgetting
student challenge, no matter the amount of expert knowledge. In order to better under-
stand their behaviour in this challenge, we plot in figure H.10 both the evolution of their
percentage of mastered tasks and their average training return. We also add ALP-GMM
and ADR (two students that performed well in this challenge) as baselines for comparison.
While ADR and ALP-GMM make the student quickly recover from a reset (i.e., the
percentage of mastered tasks quickly reaches the performance it had before the reset)
and then carry on improving, both GoalGAN and SPDL suffer from resets and do not
manage to recover, leading to a poor final performance.

Multiple factors could explain this phenomenon. First, in the case of SPDL, even
though the algorithm tries to shift its sampling distribution such that it maximizes the
student’s performance, the optimization methods also have to minimize the distance to
the target distribution, which is a Gaussian spanning over the entire task space. However,
resetting the student’s policy requires the ACL method to revert to the initial simple task
distribution that it proposed at the beginning of training. Such a reverse process might
not easily be achievable by SPDL, whose optimization procedure progressively shifts its
sampling distribution towards the target one.
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Concerning GoalGAN;, the performance impact of student resets is most likely due

to its use of a buffer of "Goals of Intermediate Difficulty" to train the goal generator.
Upon student reset, this buffer becomes partially obsolete, as the student is reinitialized,

making it lose all learned walking gaits, i.e., everything must be learned again. This

means the goal generator will propose tasks that are too complex for a student who is

just starting to learn. Because GoalGAN cannot reset its buffer of "Goals of Intermediate

Difficulty" (which would require knowledge over the student’s internal state), it impairs

its ability to shift to simpler task subspaces quickly.
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Figure H.10: Percentage of mastered test tasks and average training return of
GoalGAN, SPDL, ALP-GMM and ADR on the forgetting student challenge.
Curves are averages over 32 seeds along with the standard error of the mean.

Case study: Impact of expert knowledge on
ALP-GMM

As mentioned, ALP-GMM is a method that initially did not require any expert

knowledge. Moreover, it relies on an exploration (bootstrap) phase to fill its buffer,

usually using uniform sampling over the task space. In TeachMyAgent, we provide an

extended version of it where we added the possibility of using expert knowledge by
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bootstrapping from an initial distribution instead of a uniform distribution. In this
case study, we take a look at the impact such a theoretical improvement had on their
performance. We focus on the mostly unfeasible and forgetting student challenges, as
the first highlighted the most how prior knowledge can help an ACL method (helping
it start in a feasible region) and the latter showed interesting results for this case study,
in addition of being easy to analyze (as it only uses a bipedal walker on the original
task space of the Stump Tracks). We gather these results in figure H.11. Note that both
the no and low expert knowledge setups are the same for ALP-GMM, meaning that any
difference between their results is only due to variance in both the student’s learning and
ACL process.

When looking at these results, one can see that the high expert knowledge setup is
significantly better than the two other setups at the beginning of the training in both
challenges. These results can also be completed by our sample efficiency case study (see
figure H.9), showing that adding expert knowledge to ALP-GMM makes it more sample
efficient. Then, as training advances, the difference becomes statistically insignificant
(p > 0.05). Finally, while the final results given in tables H.4, H.5, and H.6 show an
improved percentage of mastered tasks in almost all challenges, with a notable difference
(at least +5) on the mostly unfeasible challenge, results on the original Stump Tracks
experiments (table H.3) show better results with no expert knowledge. It is thus not clear
whether adding this prior knowledge to ALP-GMM benefits the whole training instead of
just the beginning. Note that similar behaviors were also obtained with Covar-GMM,
even though they were not as significant as the ones of ALP-GMM.
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Figure H.11: Percentage of mastered test tasks and average training return
of ALP-GMM on both the mostly unfeasible and the forgetting student
challenges. Curves are averages over 32 seeds along with the standard error
of the mean. We compare the impact of high expert knowledge compared to
the two other setups using Welch’s t-test and highlight significant (p < 0.05)
differences with stars.)

Case study: What ADR needs

ADR is a very efficient and light method, that, when all its expert knowledge require-
ments are satisfied, competes with the best teachers. However, in order to obtain such an
efficient behaviour, ADR needs certain conditions that are implied by its construction.
First, as explained in Section H.8, ADR starts its process using a single task, and makes
the assumption that this latter is easy enough for the freshly initialized student. It then
progressively grows its sampling distribution around this task if the student manages to
"master" the proposed tasks. While this behaviour seems close to SPDL’s, ADR does
not have any target distribution to help it shift the distribution even if the students’
performances are not good enough. Hence, ADR can get completely stuck if it is ini-
tialized on a task lying in a very hard region, whereas SPDL would still try to converge
to the target distribution (even though the performance would not be as good as if its
initial distribution was set in an easy subspace). Similarly, GoalGAN also uses an initial
distribution at the beginning of the training, which, as shown in the results, has a strong
impact on the final performance. However, even without it, Goal GAN is still able to
reach a decent performance in certain challenges (e.g., mostly trivial), unlike ADR. This
observation can also be seen in the Parkour’s experiments, where Goal GAN reaches the
top 4 while ADR obtains the worst performance. In order to highlight this explanation,
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we provide the results of ADR in the mostly unfeasible and mostly trivial challenges in
figure H.12, in addition of the clear difference between expert knowledge setups showed
by figure H.1 and tables H.4, H.5, and H.6. Using figure H.12, one can see the clear and
significant (p < 0.05) difference between the two expert knowledge setups.

Mostly unfeasible Mostly trivial
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Figure H.12: Percentage of mastered test tasks and average training return
of ADR on both the mostly unfeasible and mostly trivial challenges. Curves
are averages over 32 seeds along with the standard error of the mean. We
compare the impact of high to low expert knowledge using Welch’s t-test
(p < 0.05) and highlight significant differences with stars.)

In addition to an initial task well set using prior knowledge about the task space,
ADR needs a difficulty landscape not too rugged to be able to expand and reach regions
with high learning progress for the student. Indeed, when looking at its algorithm, one
can see that the sampling distribution grows in a certain direction only if the student is
able to master the tasks proposed at the edge of the distribution on this direction. If it
is not the case (i.e., if this region of the task space is too hard for the current student’s
capabilities), the sampling distribution will shrink. This simple mechanism makes the
strong assumption that if the difficulty is too hard at one edge of the distribution, there
is no need to go further, implicitly saying that the difficulty further is at least as hard
as the one at the edge. While this works well in the vanilla task space of our Stump
Tracks environment (our difficulty is clearly smooth and even monotonically increasing),
any task space with a rugged difficulty landscape would make the problem harder for
ADR. Indeed, as it reaches a valley in the difficulty landscape surrounded by hills of
unfeasible (or too hard for the current student’s abilities) tasks, ADR can get stuck. In
order to highlight this behaviour, we use our rugged difficulty landscape challenge, where
we created a discontinuous difficulty landscape where unfeasible regions can lie in the
middle of the task space. Figure H.13 shows how ADR is unable to solve this challenge,
no matter the amount of expert knowledge it uses, leading to the worst performance of
our benchmark (significantly worse than Random at p < 0.05). Note that this issue also
happens in our Parkour experiments, as the difficulty of the task space is very rugged
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(see Section H.5).
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Figure H.13: Percentage of mastered test tasks and average training return
of ADR on rugged difficulty landscape challenge. Curves are averages over
32 seeds along with the standard error of the mean.

H.11.3 Parkour

Overall results

In this section, we present the performance of our teacher algorithms on the Parkour
track experiments. We present the final results in table H.7 as well as a comparison
in figure H.14 using Welch’s t-test. We also provide insights concerning the obtained
policies at http://developmentalsystems.org/TeachMyAgent/. When looking at the
overall results, one can see that ALP-GMM is the only teacher performing significantly
better than Random throughout training. Covar-GMM'’s performance are very close to
ALP-GMM, as well as RIAC, which obtains very similar results to GoalGAN. While
being very close to Random, Setter-Solver’s results are not significantly different from
ALP-GMM’s results by the end of the training. Finally, while SPDL’s behavior is very
similar to Random, ADR reaches a plateau very soon and eventually obtains significantly
worse results than the random teacher.
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Table H.7: Percentage of mastered tasks after 20 million steps on the Parkour
track. Results shown are averages over 16 seeds along with the standard
deviation for each morphology as well as the aggregation of the 48 seeds in
the overall column. We highlight the best results in bold.

ALGORITHM BIPEDALWALKER Fisu CLIMBER OVERALL

RaNDOM 27.25 (£ 10.7) 23.6 (£ 21.3) 0.0 (£ 0.0) 16.9 (£ 18.3)
ADR 14.7 (£ 19.4) 5.3 (£20.6) 0.0 (£0.0) 6.7 (£17.4)
ALP-GMM 42.7 (£ 11.2)  36.1 (£ 28.5) 0.4 (£ 1.2) 26.4 (£ 25.7)
CovAar-GMM 35.7 (£ 15.9) 29.9 (£ 27.9) 0.5 (£ 1.9) 22.1 (£ 24.2)
GOALGAN 25.4 (£ 24.7) 34.7 (£ 37.0) 0.8 (£ 2.7) 20.3 (£ 29.5)
RIAC 31.2 (+ 8.2) 37.4 (£ 254) 0.4 (£1.4) 23.0(£22.4)
SPDL 30.6 (+ 22.8) 9.0 (£ 24.2) 1.0 (£ 3.4) 13.5 (£ 23.0)
SETTER-SOLVER ~ 28.75 (£ 20.7) 51(£7.6) 0.0(£0.0) 11.3 (£ 17.9)
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Figure H.15: Average percentage of mastered tasks over 16 seeds using the
bipedal walker along with the standard error of the mean. We calculate,
every 5 million steps, which method obtained statistically different (p < 0.05)
results from Random and indicate it with a star.

60
= ALP-GMM
=== Covar-GMM
* *
== ADR * s *
== Random
== RIAC
3 40— GoalGAN
@ Self-Paced
ko = Setter-Solver
©
E|
o
<20
0
0 5 15 20

10
Agent steps (millions)

Figure H.16: Average percentage of mastered tasks over 16 seeds using the
fish along with the standard error of the mean. We calculate, every 5 million
steps, which method obtained statistically different (p < 0.05) results from
Random and indicate it with a star.

Case study: Learning climbing locomotion

As shown in figures H.4 and H.17, none of the ACL methods implemented in Teach-
MyAgent managed to find a curriculum helping the student to learn an efficient climbing
policy and master more than 1% of our test set. While learning climbing locomotion can
arguably appear as a harder challenge compared to the swimming and walking locomotion,
we present in this case study the results of an experiment using our easy CPPN’s input
space (see Section H.10.4), as well as no water (i.e., the maximum level is set to 0.2,
leading to no tasks with water). Using this, we show that simplifying the task space allows
our Random teacher to master more than 6% our test set with its best seed reaching
30% at the end of learning in only 10 million steps. In comparison, our results in the
benchmark show a best performance of 1% of mastered tasks (SPDL) with its best seed
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Figure H.17: Average percentage of mastered tasks over 16 seeds using the
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from Random and indicate it with a star.

reaching only 14% by the end of learning. As this simpler task space contains more
feasible tasks, these results show that the poor performance obtained with the chimpanzee
embodiment are due to the inability of the implemented ACL algorithms to find feasible
subspaces for their student. This also hints at possible better performance by future
methods in this totally open challenge of TeachMyAgent. See figure H.18 for the evolution
of the percentage of mastered tasks by the Random teacher in this simpler experiment.
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Figure H.18: Random teacher in the easy CPPN’s input space with
no water. Average percentage of mastered tasks over 16 seeds using our
chimpanzee embodiment, along with the standard error of the mean.
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